| 研究生: |
葉承翰 Yeh, Chen-han |
|---|---|
| 論文名稱: |
以氧化鋅奈米顆粒混合DBPPV作為發光層的有機高分子發光二極體之探討 Polymer Light Emitting Diodes Based on DBPPV-ZnO Nanocomposite Emissive Layer |
| 指導教授: |
許進恭
Sheu, Jinn-Kong 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 有機高分子發光二極體 、氧化鋅 |
| 外文關鍵詞: | ZnO, PLED, DBPPV |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於資訊產業的發展,人們對於顯示器的需求日漸增高。而有機高分子發光二極體(polymer light emitting diode(PLED))則因為他在顯示器上的應用而廣受注目,它具有低製造成本、製程容易、輕、薄、和可製作於大面積面板及可撓是基板等優點。然而,有機高分子材料容易受環境中的水氣、氧氣的影響,進而影響其元件的特性及壽命,而限制了其在商業化的應用,因此目前有許多研究均致力於探討如何改善有機高分子二極體的特性及缺陷的研究。在此篇論文中,我們將不同比例的ZnO奈米顆粒加入到DB-PPV發光層當中,探討ZnO對於PLED的影響。
首先我們製作兩層結構的有機高分子二極體(ITO/PEDOT:PSS/Composite layer/Ca/Al)。以導電薄膜PEDOT:PSS 為電洞傳輸層(HTL),厚度為40nm,Composite layer為各種不同比例的DB-PPV與ZnO奈米顆粒混溶後旋轉塗佈而成的發光層,而Ca和Al則分別為陰極以及覆蓋層。
經由AFM的量測我們明顯的發現氧化鋅奈米顆粒的加入增加了發光層的粗糙度,並解隨著氧化鋅奈米顆粒的比例增加而粗糙度越大。而由AFM 3D及SEM的分析,也可以證實氧化鋅奈米顆粒確實有加入發光層中,並且隨著比例的減少,其聚集成塊的現象也隨之減少。另外,從元件的電及光特性的探討,我們可以得到最好的DB-PPV對氧化鋅奈米顆粒的比例為3:1,其的確達到了增加了元件的電流密度、亮度及電流效率。再將此奈米混溶的元件經過120℃三十分鐘的退火處理,我們可以得到其最大效率為2.90 cd/A @ 1.87 mA/cm2。
By the development of the intelligent industry, people have more require for monitor. And polymer light emitting diodes (PLED) have attracted much attention because of their potential applications in information display. They have some advantages such as low fabrication cost, easy processing, lightweight, and can fabricated on large area display and flexible substrate…,etc. However, the conjugated polymer is easy to affect by the moisture and oxygen in environment, and then influence the performance and life time to limit its applications in commercial, so there are many researches discussing to improve the performance of PLED. In this thesis, we composite different proportion of ZnO nanoparticle into DBPPV emissive layer, and discussed the influence of ZnO to PLED.
In this work, the double layer structure had been made (ITO/PEDOT/Composite layer/Ca/Al) .The PEDOT (40nm) served as HTL and composite layer spin coated as emission layer.
We observed the roughness of emission layer increased when the ZnO nanoparticle composite with the proportion of ZnO nanoparticle increasing. By the analysis of AFM and SEM, we demonstrated that the phenomenon of cluster decrease as the reduction of ZnO proportion. The best proportion of DBPPV to ZnO is 3:1; It demonstrated the ZnO nanoparticle have the ability to improve the current density, luminance and efficiency. After being annealed the nanocomposite device at 120℃, the highest luminance efficiency is 2.90 cd/A @ 1.87 mA/cm.
Chapter One
[1] A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. (1953), 50, 64.
[2] A. Bernanose, P. Vouaux, J. Chim. Phys. (1953), 50, 261.
[3] E. Gurnee, R. Fernandez, US Patent 3 172 862, (1965).
[4] W. Digby, M. Schadt, US Patent 3 621 321, (1971).
[5] R. Partridge, US Patent 3 995 299, (1976).
[6] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burn, A. Holmes, Nature (1990), 347, 539.
[7] R. Friend, J. Burroughes, D. Bradley, WO Patent 90/13 148, (1990). R. Friend, J. Burroughes, D. Bradley, US Patent 5 247 190, (1993).
[8] D. Braun, A. Heeger, Appl. Phys. Lett. (1991), 58, 1982.
[9] H. Radousky, A. Madden, K. Pakbaz, T. Hagler, H. Lee, H. Lorenzana, G. Fox, P. Elliker, Int. SAMPE Tech. Conf. (1995), 27, 1143.
[10] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest, Phys.Rev. B 60, 14422 (1999).
[11] M. D. McGehee, T. Bergstedt, C. Zhang, A. P. Saab, M. B. O’Regan, G. C. Bazan, V. I. Srdanov, and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 11, 1349 (1999)
[12] I. D. Parker, J. Appl. Phys. 75, 1656 (1994)
[13] D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
[14] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
[15] H. Tang, F. Li, and J. Shinar, Appl. Phys. Lett. 71, 2560 (1997). 11J. Yoon, J.-J. Kim, T.-W. Lee, and O.-O. Park, Appl. Phys. Lett. 76, 2152 (2000).
[16] S. Han, X. Feng, and Z. H. Lu, Appl. Phys. Lett. 82, 2715 (2003).
[17] S.A. Carter, J.C. Scott, P.J. Brock, Appl. Phys. Lett. 71(1997) 1145.
[18] P.K.H. Ho, D.S. Thomas, R.H. Friend, N. Tessler, Science 285 (1999), 233.
[19] T.-W. Lee, O.O. Park, J. Yoon, J.-J. Kim, Adv. Mater. 13 (2001) 211.
Chapter Two
[20] Marks, R. N., D. D. C. Bradley, R. W. Jackson, P. L. Burn, and A. B. Holmes. Synth. Met. 55, (1993) 4128.
[21] Paker, I. D. J. Appl. Phys. 75, (1994) 1656.
[22] Gmeiner, J., S. Karg, M. Meier, W. Riess, P. Strohriegl, and M.
Schwoerer. Acta Polymer. 44, (1994) 201.
[23] Campbell, A. J., D. D. C. Bradley, and D. G. Litzey. J. Appl. Phys. 82, (1997) 6326.
[24] Davids, P. S., I. H. Campbell, and D. L. Smith. J. Appl. Phys. 82, (1997) 6319.
[25] Vesweber, H., J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bassler. Synth. Met. 68, (1995) 263.
[26] Logdlund, M., and J. L. Bredas. J. Chem. Phys. 101, (1994) 4357.
[27] Dannetum, P., M. Fahlman, C. Fahlman, K. Kaerijama, Y. Sonoda, R. Lazzaroni, J. L. Bredas, and W. R. Salaneck. Synth. Met. 67, (1994) 133.
[28] Cao, Y., P. Smith, and A. J. Heeger. Polymer 32, (1991) 1210.
[29] Borsenberger, P. M., and D. S. Weiss. Organic Photoreceptors for Imaging Systems. (Marcel Dekker, New York), (1993).
[30] Blom, P.W. M., M. J. de Jong, and J. J. M. Vleggaar. Appl. Phys. Lett. 68, (1993) 3308.
[31] Blom, P.W. M., M. J. de Jong, and M. G van Munster. Phys. Rev. B 55, (1997) R656.
[32] Campbell, A. J., M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley. J. Appl. Phys. 84, (1998) 6737.
[33] M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E. Galvin, T.M.
Miller, Phys. Rev. Lett. 73, (1994) 744.
[34] M.C. Pham, M. Mostefai, M. Simon and P.C. Lacaze, Synth. Met., 63, 7(1994)
[35] M.C. Pham, M. Mostefai, and P.C. Lacaze, Synth. Met., 63, 39(1994)
[36] A.R Brown, D.D.C Bradley, J.H. Burroughes, R.H. Friend, N.C. Greenham, P.L. Burn, A.B. Holmes, and A. Kraft, Appl. Phys. Lett. 61, 2793 (1992).
[37] Min ZR, Ming ZQ, Yong XZ, Han ZM, Walter R, Friendrich
K. Polymer.42: 167.(2001)
[38] Zhu H, Wilkie CA. Polym. Int.; 49: 1158.(2000)
[39] Lan T, Kaviratna PD, Pinnavaia TJ. Chem. Mater. 6: 573.(1994)
[40] N. C. Greenham, P. Xiaogang, and A. P. Alivisatos, Phys. Rev. B,54,17628 (1996).
[41] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995)
[42] F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger,Chem.Phys. Lett. 256, 424 (1996)
[43] S.A. Carter, J.C. Scott, P.J. Brock, Appl. Phys. Lett. 71(1997) 114
[44] Jong Hyeok Park, Yong Taik Lim, O Ok Park, Jai Kyeong Kim,
Jae-Woong Yu, and Young Chul Kim,Chem. Mater.,16,688 (2004)
Chapter three
[44]Carrie Donley, Darren Dunphy, David Paine, Chet Carter, Ken Nebesny, Paul Lee, Dana Alloway, and Neal R. Armstrong, Langmuir, 18 (2002) 450-457.
[45] S.K. So, W.K. Choi, C.H. Cheng, L.M. Leung, C.F.Kwong, Appl. Phys. A 68, (1999) 447–450.
[46] T.P. Nguyena, S.A. de Vos, Appl. Surf. Sci. 221 (2004) 330–339.
[47] F. Cacialli, J.S. Kim, T.M. Brown, J. Morgado, M. Granstrom, R.H. Friend, G. Gigli, R. Cingolani, L. Favaretto, G. Barbarella, R. Daik, W.J. Feast, Synth. Met. 109 (2000) 7–11.
[48] T. OYAMADA, C. MAEDA, H. SASABE and C. ADACHI, Jpn. J. Appl. Phys. Part II, 42 (2003) L 1535–L 1538
[49] C. Flueraru, S. Schrader, V. Zauls, H. Motschmann, B. Stiller, R. Kiebooms, Synth. Met., 111–112 (2000) 603–606.
[50] M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E. Galvin, Phys. Rev. Lett., 73 (1994) 744.
Chapter Four
[51] T.-Q. Nguyen, I. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B104, 237 (2000)
[52] B. B. Mandelbrot, The Fractal Geometry of Nature, (San Francisco: W. H. Freeman 1982).
[53] Ming-Lung TU, Yan-Kuin SU_, Wei-Chung LU1, Henglong YANG, Tzung-Fang KUO and Ten-Chin WEN, Japanese Journal of Applied Physics. 44(2005) 7482.