| 研究生: |
林德嫻 Lin, Te-Hsien |
|---|---|
| 論文名稱: |
大白鼠重組αA與突變株D69R水晶體蛋白與金屬離子共存下伴護活性與結構之研究 Chaperone Activity and Structure Study of Wild Type αA- and Mutant D69R αA-Crystallins in the presence of Metal Ions |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | αA水晶體蛋白 、D69R 、銅離子 、鋅離子 、伴護活性 |
| 外文關鍵詞: | αA-crystallin, D69R, copper ion, zinc ion, chaperone activity |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
αA水晶體蛋白源自於小熱休克蛋白,也被證明具有伴護活性,其在體內的主要功用之一是維持水晶體的透明度。白內障的產生與水晶體蛋白的活性有很大的關聯,而有許多研究指出在白內障患者的水晶體檢測出有較高濃度的金屬離子累積,特別是銅離子和鋅離子對於體內酵素功能有相當重要的影響,因此本篇實驗目的是比較αA水晶體蛋白和突變株D69R在銅、鋅離子存在下,其結構與伴護活性的差異。
首先CD光譜顯示銅離子均會造成二級或三級結構極大的改變,鋅離子則無。ANS和Tryptophan螢光光譜於銅離子存在時有淬熄現象,隨著銅離子濃度增加而強度減弱,鋅離子會使疏水性表面增加,銅鋅離子同時存在則近似銅離子單獨存在的情況。雖然D69R對銅離子有較敏感的選擇性,更容易被誘導沉澱,但伴護活性並未受影響,當銅鋅離子同時存在時,伴護活性卻有增加,而鋅離子明顯對αA水晶體蛋白和D69R有增加伴護活性的效果。尿素誘導變性實驗上也顯示鋅離子可以增加水晶體蛋白的穩定性。另外,分別將此兩種水晶體蛋白與銅離子混合後,發現高分子量的聚集體會隨時間增加而增加,但並不會影響其伴護活性。
這兩種金屬離子(銅、鋅)與αA水晶體蛋白的作用展現了完全不同的結果,即鋅離子不會造成αA水晶體蛋白結構改變,卻有助益伴護活性;銅離子存在下卻會改變蛋白的結構,但伴護活性不受影響。而伴護活性實驗中的金屬濃度,銅離子屬於過量、鋅離子約在正常範圍,比較其結果,可知鋅離子的存在確實會增加伴護活性,使用過量的銅離子則並不影響;當Asp69突變為Arg後,雖然對結構和伴護活性沒有太大影響,但在與金屬離子作用上仍顯現了差異,比起αA水晶體蛋白更容易被銅離子誘導產生聚集。
Abstract
The αA-crystallin is one of the small heat shock proteins, and was proved to have chaperone activity. It was found that many metal ions accumulated in cataract lens, so it is important to investigate the metal ions effect on crystallins, especially the copper and zinc ions which have critical effects on enzymes and proteins. In this study, we compare recombinant αA- and mutant D69R crystallins’ structure and chaperone activity under the presence of copper and zinc ions.
The CD spectra shows that copper ion could make great different on secondary and tertiary structures of both crystallins, while the zinc ion didn’t. And copper ion could quench the Tryptophan and ANS fluorescence, showing that the intensity decrease with the increase of copper concentration up to 50M; the zinc ion had no difference on Tryptophan but showed higher intensity of ANS fluorescence. When both ions coexisted, the ANS and Tryptophan fluorescence spectra were same with that of copper ion alone, indicating copper ion showed higher affinity to A-crystallin. Mutant D69R also have higher intensity on fluorescence than αA-crystallin, indicating that it has more hydrophobic sites and exposed Tryptophan site chain. Incubate copper ion with crystallin to monitor molecular weight distribution using size exclusive gel filtration, it was found that copper would induce high molecular weight aggregation. Chaperone activity results showed that for zinc the chaperone activity increased with the increase of its concentration, but not for copper.
In summary, zinc and copper ions have totally different behavior on αA- and D69R crystalline. Zinc ion did not cause significant change in its structure; however it enhanced its chaperone activity and stability. Copper ion caused significant change in its structure while no influence on its activity. The mutant D69R crystallin didn’t show obvious change in structure and chaperone activity but more tends to aggregate in the presence of copper ion than αA-crystallin.
參考文獻
1. Sharma, K. K. & Santhoshkumar, P. (2009). Lens aging: Effects of crystallins. BBA-Gen. Subjects 1790, 1095-1108.
2. Spector, A. (1970). Physical Chemistry of the Eye. Arch. Ophthal. 83, 506-522.
3. Forrester, J., Dick, A., McMenamin & Lee, W. (1996). The Eye: Basic Sciences in Practice, W. B. Saunders Company Ltd., London.
4. Berman, E. R. (1991). Biochemistry of the Eye, Plenum Press, New York and London.
5. Horwitz, J. (1993). The Function of Alpha-Crystallin. Invest. Ophthalmol. Vis. Sci. 34, 10-22.
6. Piatigorsky, J. (1993). Puzzle of Crystallin Diversity in Eye Lenses. Dev. Dyn. 196, 267-272.
7. Piatigorsky, J. (1989). Lens crystallins and their genes: diversity and tissue-specific expression. FASEB J., 1933-1940.
8. Lubsen, N. H., Aarts, H. J. M. & Schoenmakers, J. G. G. (1988). The evolution of lenticular proteins: the β- and γ-crystallin super gene family. Prog. Biophys. Mol. Biol. 51, 47-76.
9. Horwitz, J. (2003). Alpha-Crystallin. Exp. Eye Res. 76, 145-153.
10. Horwitz, J. (2000). The function of alpha-crystallin in vision. Sem. Cell. Dev. Biol. 11, 53-60.
11. Bloemendal, H. (1981). Molecular and Cellular Biology of the Eye Lens, John Wiley & Sons, New York.
12. Graw, J. (2009). Genetic of Crystallins: Cataract and beyond. Exp. Eye Res. 88, 173-189.
13. Kato, K., Shinohara, H., Kurobe, N., Goto, S., Inaguma, Y. & Ohshima, K. (1991). Immunoreactive αA crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. BBA-Protein Struct. M. 1080, 173-180.
14. Bhat, S. P. & Nagineni, C. N. (1989). αB subunit of lens-specific protein α-crystallin is present in other ocular and non-ocular tissues. Biochem. Biophys. Res. Commun. 158, 319-325.
15. Iwaki, T., Kume-Iwaki, A., Liem, R. K. H. & Goldman, J. E. (1989). αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57, 71-78.
16. Renkawek, K., Jong, W. W., Merck, K. B., Frenken, C. W. G. M., Workum, F. P. A. & Bosman, G. J. C. G. M. (1992). αB-Crystallin is present in reactive glia in Creutzfeldt-Jakob disease Acta Neuropathol. 83, 324-327.
17. Lowe, J., McDermott, H., Pike, I., Spendlove, I., Landon, M. & Mayer, R. J. (1992). αB crystallin expression in nonlenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J. Pathol. 166, 61-68.
18. Iwaki, T., Wisniewski, T., Iwaki, A., Corbin, E., Tomokane, N., Tateishi, J. & Goldman, J. E. (1992). Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol. 140, 340-356.
19. Siezen, R. J. & Argos, P. (1983). Structural Homology of lens crystallinsstar, open: III. Secondary structure estimation from circular dichroism and prediction from amino acid sequences BBA-Protein Struct. M. 748, 56-67.
20. Lamba, O. P., Borchmana, D., Sinha, S. K., Shah, J., Renugopalakrishnan, V. & Yappert, M. C. (1993). Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitative analysis and resolution by Fourier self-deconvolution and curve fit BBA-Protein Struct. M. 1163, 113-123.
21. Bindels, J. G., Siezen, R. J. & Hoenders, H. J. (1979). Model for the Architecture of Alpha-Crystallin. Ophthalmic Res. 11, 441-452.
22. Tardieu, A., Laporte, D., Licinio, P., Krop, B. & Delaye, M. (1986). Calf lens α-crystallin quaternary structure : A three-layer tetrahedral model. J. Mol. Biol. 192, 711-724.
23. Augusteyn, R. C. & Koretz, J. F. (1987). A possible structure for α-crystallin. FEBS Lett. 222, 1-5.
24. Walsh, M. T., Sen, A. C. & Chakrabarti, B. (1991). Micellar subunit assembly in a three-layer model of oligomeric alpha-crystallin. J. Biol. Chem. 266, 20079-20084.
25. Wistow, G. (1993). Possible Tetramer-based Quaternary Structures for α-Crystallins and Small Heat Shock Proteins. Exp. Eye Res. 56, 729-732.
26. Carver, J. A., Aquilina, J. A. & Truscott, R. J. W. (1994). A Possible Chaperone-like Quaternary Structure for α-Crystallin. Exp. Eye Res. 59, 231-234.
27. Groth-Vasselli, B., Kumosinski, T. F. & Farnsworth, P. N. (1995). Computer-generated model of the quaternary structure of alpha crystallin in the lens. Exp. Eye Res. 61, 249-253.
28. Farnsworth, P. N., Frauwirth, H., Groth-Vasselli, B. & Singh, K. (1998). Refinement of 3D structure of bovine lens αA-crystallin. Int. J. Biol. Macromol. 22, 175-185.
29. Narberhaus, F. (2002). α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network. Microbiol. Mol. Biol. Rev. 66, 64-93.
30. Ingolia, T. D. & Craig, E. A. (1982). Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc. Natl. Acad. Sci. USA 79, 2360-2364.
31. Horwitz, J. (1992). α-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449-10453.
32. Sun, Y. & Macrae, T. H. (2005). Small Heat Shock Proteins: Molecular Structure and Chaperone Function Cell. Mol. Life Sci. 62, 2460-2476.
33. Horwitz, J. (2009). Alpha crystallin: The quest for a homogeneous quaternary structure. Exp. Eye Res. 88, 190-194.
34. Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L. & Slingsby, C. (1990). X-ray analysis of bold betaB2-crystallin and evolution of oligomeric lens proteins. Nature 347, 776-780.
35. Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnell, B. & Wistow, G. (1981). The molecular structure and stability of the eye lens: X-ray analysis of the γ-crystallin II. Nature 289, 771-777.
36. Ecroyd, H. & Carver, J. A. (2009). Crystallin proteins and amyloid fibrils. Cell. Mol. Life Sci. 66, 62-81.
37. Crabbe, M. J. C. & Goode, D. (1994). α-Crystallin: chaperoning and aggregation. Biochem. J. 297, 253-254.
38. Derham, B. K. & Harding, J. J. (1999). α-crystallin as a Molecular Chaperone. Prog. Retin. Eye. Res. 18, 463-509.
39. Rao, P. V., Horwitz, J. & Zigler, J. S. (1993). α-Crystallin, a Molecular Chaperone, Forms a Stable Complex with Carbonic Anhydrase upon Heat Denaturation. Biochem. Biophys. Res. Commun. 190, 786-793.
40. Merck, K. B., Groenen, P. J. T. A., Voorter, C. E. M., de Haard-Hoekman, W. A., Horwitz, J., Bloemendal, H. & de Jong, W. W. (1993). Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J. Biol. Chem. 268, 1046-1052.
41. Wang, K. & Spector, A. (1994). The Chaperone Activity of Bovine α Crystallin. Interaction with other lens crystallins in native and denatured states. J. Biol. Chem. 269, 13601-13608.
42. Raman, B. & Rao, C. M. (1994). Chaperone-like Activity and Quaternary Structure of α-Crystallin. J. Biol. Chem. 269, 27264-27268.
43. Smulders, R. H. P. H., van Geel, I. G., Gerards, W. L. H., Bloemendal, H. & de Jong, W. W. (1995). Chaperone-like Activity of αAins-crystallin, an Alternative Splicing Product Containing a Large Inset Peptide. J. Biol. Chem. 270, 13916-13924.
44. Andley, U. P., Mathur, S., Griest, T. A. & Petrash, J. M. (1996). Cloning, Expression, and Chaperone-like Activity of Human aA-Crystallin. J. Biol. Chem. 271, 31973-31980.
45. Borkman, R. F., Knight, G. & Obi, B. (1996). The Molecular Chaperone a-Crystallin Inhibits UV-Induced Protein Aggregation. Exp. Eye Res. 62, 141-148.
46. Farahbakhsh, Z. T., Huang, Q.-L., Ding, L.-L., Altenbach, C., Steinhoff, H.-J., Horwitz, J. & Hubbell, W. L. (1995). Interaction of alpha-crystallin with Spin-Labeled Peptides. Biochemistry 34, 509-516.
47. Bova, M. P., Mchaourab, H. S., Han, Y. & Fung, B. K. K. (2000). Subunit Exchange of Small Heat Shock Proteins. Analysis of Oligomer Formation of α-Crystallin and Hsp27 by Fluorescence Resonance Energy Transfer and Site-Directed Truncations. J. Bio. Chem. 275, 1035-1042.
48. Sharma, K. K., Kumar, R. S., Kumar, G. S. & Quinn, P. T. (2000). Synthesis and characterization of a peptide identified as a functional element in αA-crystallin. J. Biol. Chem. 275, 3767-3771.
49. Abgar, S., Vanhoudt, J., Aert, T. & Clauwaert, J. (2001). Study of the Chaperoning Mechanism of Bovine Lens α-crystallin, a Member of the α-Small Heat Shock Superfamily. Biophys. J. 80, 1986-1995.
50. Reddy, G. B., Kumar, P. A. & Kumar, M. S. (2006). Chaperone-like Activity and Hydrophobicity of α-Crystalln. IUBMB Life 58, 632-641.
51. Pras, E., Frydman, M., Levy-Nissenbaum, E., Bakhan, T., Raz, J., Assia, E. & Goldman, B. (2000). A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest. Ophthalmol. Vis. Sci. 41, 3511-3515.
52. Mackay, D. S., Andley, U. P. & Shiels, A. (2003). Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Euro. J. Hum. Genet. 11, 784-793.
53. Litt, M., Kramer, P., LaMorticella, D. M., Murphey, W., Lovrien, E. W. & Weleber, R. G. (1998). Autosomal Dominant Congenital Cataract Associated with a Missense Mutation in the Human Alpha Crystallin Gene CRYAA. Hum. Mol. Gen. 7, 471-474.
54. Gu, F., Luo, W., Li, X., Wang, Z., Lu, S., Zhang, M., Zhao, B., Zhu, S., Feng, S., Yan, Y.-b., Huang, S. & Ma, X. (2008). A novel mutation in AlphaA-crystallin (CRYAA) caused autosomal dominant congenital cataract in a large Chinese family. Hum. Mutat. 29, 769-777.
55. Santhiya, S. T., Söker, T., Klopp, N., Illig, T., Prakash, M. V. S., Selvaraj, B., Gopinath, P. M. & Graw, J. (2006). Identification of a novel, putative cataract-causing allele in CRYAA (G98R) in an Indian family. Mol. Vis. 12, 768-773.
56. Li, H., Li, C., Lu, Q., Su, T., Ke, T., Li, D. W.-C., Yuan, M., Liu, J., Ren, X., Zhang, Z., Zeng, S., Wang, Q. K. & Liu, M. (2008). Cataract mutation P20S of αB-crystallin impairs chaperone activity of αA-crystallin and induces apoptosis of human lens epithelial cells BBA-Mol. Basis Dis. 1782, 303-309.
57. Vicart, P., Caron, A., Guicheney, P., Li, Z., Prévost, M.-C., Faure, A., Chateau, D., Chapon, F., Tomé, F., Dupret, J.-M., Paulin, D. & Fardeau, M. (1998). A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nature Genetics 20, 92-95.
58. Liu, Y., Zhang, X., Luo, L., Wu, M., Zeng, R., Cheng, G., Hu, B., Liu, B., Liang, J. & Shang, F. (2006). A novel alphaB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest. Ophthalmol. Vis. Sci. 47, 1069-1075.
59. Kumar, L. V. S., Ramakrishna, T. & Rao, C. M. (1999). Structural and Functional Consequences of the Mutation of a Conserved Arginine Residue in αA andαB Crystallins. J. Biol. Chem. 274, 24137-24141.
60. Huang, Q., Ding, L.-L., Phan, K., Cheng, C., Xia, C.-h., Gong, X. & Horwitz, J. (2009). Mechanism of Cataract Formation in alphaA-crystallin Y118D Mutation. Invest. Ophthalmol. Vis. Sci. 50, 2919-2926.
61. Bhagyalaxmi, S. G., Srinivas, P., Barton, K. A., Kumar, K. R., Vidyavathi, M., Petrash, J. M., Reddy, G. B. & Padma, T. (2009). A novel mutation (F71L) in αA-Crystallin with defective chaperone-like function associated with age-related cataract. BBA-Mol. Basis Dis. 1792, 974-981.
62. Das, K. R. & Surewicz, W. K. (1995). Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of α-crystallin. FEBS Lett. 369, 321-325.
63. Raman, B., Ramakrishna, T. & Rao, C. M. (1995). Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett. 365, 133136.
64. Datta, S. A. & Rao, C. M. (1999). Differential Temperature-dependent Chaperone-like Activity of αA- and αB-crystallin Homoaggregates. J. Biol. Chem. 274, 34773-34778.
65. Bhattacharyya, J., Srinivas, V. & Sharma, K. K. (2002). Evaluation of Hydrophobicity Versus Chaperonelike Activity of Bovine αA- and αB-Crystallin. J. Protein Chem. 21, 65-71.
66. Kumar, M. S., Kapoor, M., Sinha, S. & Reddy, G. B. (2005). Insights into Hydrophobicity and the Chaperone-like Function of αA- and αB-Crystallins. J. Biol. Chem. 280, 21726-21730.
67. Garland, D. (1990). Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: A hypothesis. Exp. Eye Res. 50, 677-682.
68. Tapiero, H., Townsend, D. M. & Tew, K. D. (2003). Trace element in human physiology and pathology: copper. Biomed. Pharmacother. 57, 386-398.
69. Tapiero, H. & Tew, K. D. (2003). Trace element in human physiology ans pathology: zinc and metallothioneins. Biomed. Pharmacother. 57, 399-411.
70. Aydin, E., Cumurcu, T., Özuğurlu, F., Özyurt, H., Sahinoglu, S., Mendil, D. & Hasdemir, E. (2005). Levels of Iron, Zinc, and Copper in Aqueous Humor, Lens, and Serum in Nondiabetic and Diabetic Patients. Biol. Trace. Elem. Res. 108, 33-41.
71. Dawczyski, J., Blum, M., Winnefeld, K. & Strobel, J. (2002). Increased Content of Zinc and Iron in Human Cataractous Lens. Biol. Trace. Elem. Res. 90, 15-23.
72. Marini, I., Bucchioni, L., Voltarelli, M., Del Corso, A. & Mura, U. (1995). α-Crystallin-like Molecular Chaperone against the Thermal Denaturation of Lens Aldose Reductase. The Effect of Divalent Metal Ions. Biochem. Biophys. Res. Commun. 212, 413-420.
73. Hawse, J. R., Cumming, J. R., Opperman, B., Sheets, N. L., Reddy, V. N. & Kantorou, M. (2003). Activation of Metallothioneins and α-crystallin/sHSPs in Human Lens Epithelia Cells by Metals and the Metal Content of Aging Clear Human Lenses. Invest. Ophthalmol. Vis. Sci. 44, 672-679.
74. Ganadu, M. L., Aru, M., Mura, G. M., Coi, A., Mlynare, P. & Lozlowski, H. (2005). Effects of divalent metal ions on the alpha beta-crystallin chaperone-like activity spectroscopic evidence for a complex between copper(II) and protein. J. Inorg. Biochem. 98, 1103-1109.
75. Coi, A., Bianucci, A. M., Ganadu, M. L. & Mura, G. M. (2005). A modeling study of alpha B-crystallin in complex with zinc for seeking of correlations between chaperone-like activity and exposure of hydrophobic surfaces. Int. J. Biol. Macromol. 36, 208-214.
76. Ahmad, M. F., Singh, D., Taiyab, A., Ramakrishna, T., Raman, B. & Rao, C. M. (2008). Selective Cu2+ Binding, Redox Silencing, and Cytoprotective Effects of the Small Heat Shock Proteins αA- and αB-Crystallin. J. Mol. Biol. 382, 812-824.
77. Coi, A., Bianucci, A. M., Bonomi, F., Rasmussen, P., Mura, G. M. & Ganadu, M. L. (2008). Structural perturbation of αB-crystallin by zinc and temperature related to its chaperone-like activity. Int. J. Biol. Macromol. 42, 229-234.
78. Biswas, A. & Das, K. P. (2008). Zn2+ Enhances the Molecular Chaperone Function and Stability of α-Crystallin. Biochemistry 47, 804-816.
79. Singh, D., Tangirala, R., Bakthisaran, R. & Rao, M. C. (2009). Synergistic effects of metal ion and the pre-senile cataract-causing G98R alpha A-crystallin self-aggregation propensities and chaperone activity. Mol. Vis. 15, 2050-2060.
80. Karmakar, S. & Das, K. P. (2010). Stabilization of oligomeric structure of α-crystallin by Zn+2 through intersubunit bridging. Biopolymers 95, 105-116.
81. Smulders, R. H. P. H., Merck, K. B., Aendekek, J., Horwitz, J., Takemoto, L., Slingsby, C., Bloemendal, H. & De Jong, W. W. (1995). The Mutation Asp69→Ser affects the Chaperone-like Activity of αA-Crystallin. Eur. J. Biochem. 232, 834-838.
82. van Holde, K. E., Johnson, W. C. & Ho, P. S. (2006). Principles of Physical Biochemistry. 2 edit, Pearson Education, USA.
83. 俞昶. (2005). αA水晶體蛋白突變株 D69R與 D69W伴護功能與熱集結之研究, 國立成功大學.
84. BioTek. Peptide and Amino Acid Quantification Using UV Fluorescence in Synergy HT Multi-Mode Microplate Reader.
85. Eftink, M. R. (2000). Topics in Fluorescence Spectroscopy. In Intrinsic Fluorescence of Proteins (Lakowicz, J. R., ed.), Vol. 6 Protein Fluorescence. Kluwer Academic / Plenum Publishers, New York.
86. Sheehan, D. (2009). Physical Biochemistry: principles and applications. 2 edit, Wiley-Blackwell, Singapore.
87. Hawe, A., Sutter, M. & Jaskoot, W. (2007). Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharm. Res. 25, 1487-1499.
88. Matulis, D., Baumann, C. G., Bloomfield, V. A. & Lovrien, R. E. (1999). 1-Anilino-8-Naphthalene Sulfonate as a Protein Conformational Tightening Agent. Inc. Biopoly. 49, 451-458.
89. Kelly, S. M. & Price, N. C. (2000). The Use of Circular Dichroism in the Investigation of Protein Structure and Function. Curr. Protein Pept. Sci., 349-384.
90. Rajua, M., Santhoshkumara, P., Henzlb, T. M. & Sharma, K. K. (2011). Identification and characterization of a copper-binding site in αA-crystallin. Free Radic. Biol. Med. 50, 1429-1436.
91. Rácz, P. & Ördögh, M. (1977). Investigations on trace elements in normal and senile cataractous lenses. Activation analysis of copper, zinc, manganese, cobalt, rubidium, scandium, and nickel. Graefes Arch. Clin. Exp. Ophthalmol. 204, 67-72.
92. Cekic, O. (1997). Copper, Lead, Cadmium and Calcium in Cataractous Lenses. Ophthalmic Res. 30, 49-53.
93. Ortwerth, B. J. & James, H. L. (1999). Lens Proteins Block the Copper-Mediated Formation of Reactive Oxygen Species during Glycation Reactions in Vitro. Biochem. Biophys. Res. Commun. 259, 706-710.
94. Sőti, C. & Csermely, P. (2000). Molecular chaperones and the aging process Biogerontology 1, 225-233.
95. Groenen, P. J. T. A., Merck, K. B., de Jong, W. W. & Bloemendal, H. (1994). Structure and Modifications of the Junior Chaperone α-Crystallin. Eur. J. Biochem. 225, 1-19.
96. Kumar, M. S., Reddy, P. Y., Kumar, P. A., Surolia, I. & Reddy, G. B. (2004). Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J. 379, 273-282.
97. Brahms, S. & Brahms, J. (1980). Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. Mol. Biol. 138, 149-178.
98. Wetlaufer, D. B. (1962). Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 17, 303-390.