簡易檢索 / 詳目顯示

研究生: 盧幸成
Lu, Hsing-Cheng
論文名稱: 氧化鋅對矽鋁鈣氧化物燒製水泥之影響
Effect of ZnO on Cement Manufacture from Pure CaO-Al2O3-SiO2 Mixtures
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 89
中文關鍵詞: 燒結氧化鋅氧化鋁氧化矽氧化鈣
外文關鍵詞: Zinc oxide, sinter, hydration, XRD, cement
相關次數: 點閱:61下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用純物質CaO、Al2O3、SiO2以三成分混合物實驗設計法配比進行燒結,燒成物利用XRD分析晶相後,建立基本晶相分布資料,並藉由熟料水化反應分析,探討ZnO進入C-S-A燒結系統中所造成的影響,以釐清干擾物質ZnO在C-S-A燒結系統中所扮演的角色。另外本研究擇定Al(OH)3作為C-S-A系統燒結之鋁系替代物,藉由XRD晶相觀察佐以LiF半定量分析,探討以其他鋁氧化物替代Al2O3在C-S-A系統中燒結之可行性。
    實驗結果顯示以添加3%ZnO之C-S-A系統燒製熟料,除了CaO:SiO2莫耳比為2:3之配比晶相發生轉變外,其餘生成主要晶相與單純C-S-A系統晶相相同,是故就XRD相圖觀察,添加3%ZnO於單純C-S-A系統對整體特徵晶相影響性不大。以Al(OH)3取代C-S-A系統Al2O3燒製熟料,就系統晶相生成而言,與單純C-S-A系統所燒製熟料晶相大致相同,顯示經鋁系混凝劑混凝後產生含Al(OH)3污泥具有替代水泥原料礬土的可行性。
    熟料ZnO固相殘留分析則顯示生料配比中SiO2:Al2O3莫耳比3:2、CaO:SiO2:Al2O3莫耳比5:12:3以及CaO:SiO2:Al2O3莫耳比2:3:3所燒製材料對於Zn有較佳之固相截留能力。

    To investigate the role of ZnO played in CaO-Al2O3-SiO2 sintering system, experimental mixture design was applied. Pure CaO, Al2O3, SiO2 were mixed according to three component mixture design and all mixtures were doped with several doses of ZnO. After been sintered at 1450°C for three hours, sintered sample was examined with X-ray diffraction (XRD). Combined with lithium fluoride (LiF) XRD semi-quantification technique and hydration observation, the effect ZnO on cement manufacture was established. On the other hand, aluminum hydroxide was selected as alternative material to investigate the feasibility of utilizing aluminum replacement in cement production.
    The result shows that major crystalline phase of sintered samples doped with 3%(w/w) ZnO experienced no phase transformation except sample batched with molar ratio 2:3 (CaO:SiO2). ZnO seems to have little interference on characteristic phase formation with 3% addition. In the experiments of aluminum hydroxide replacement, the semi-quantification analysis shows that major crystalline phase is mainly the same. Sludge produced from aluminum series coagulant, which contains mostly aluminum hydroxide, might have the potential of being used as cement manufacturing alternative raw material.
    With microwave digestion followed by inductively coupled plasma spectrometer, ZnO gas-solid phase distribution was analyzed. The results show that raw materials with molar ratio of 3:2 (SiO2:Al2O3), 5:12:3 (CaO:SiO2:Al2O3) and 2:3:3 (CaO:SiO2:Al2O3) have better ability of constraining ZnO in the solid phase.

    目 錄 中文摘要 I Abstract III 目錄 V 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 前言 1 1-1研究緣起 1 1-2研究目的 2 1-3 研究內容 2 第二章 文獻回顧 4 2-1 無機廢棄物資源化再利用現況 4 2-1-1 無機廢棄物處理及處置體系 4 2-1-2 無機廢棄物資源化技術 5 2-1-3 無機廢棄物水泥熟料攙和研究 8 2-1-4 無機廢棄物水泥生料添加利用 10 2-2 水泥製造及水化行為 14 2-2-1 水泥原料 14 2-2-2 水泥製程 15 2-2-3 水泥熟料水化行為 18 2-2-4 燒製水泥熟料反應 19 2-3 水泥燒製干擾物 22 第三章 實驗設備、方法、步驟 26 3-1 實驗流程 26 3-2 實驗材料之製備 26 3-2-1 實驗用藥品準備 26 3-3 C-S-A系統設計調配 28 3-3-1 單純C-S-A 系統配比調配 28 3-3-2 替代鋁系C-S-A 系統配比調配 28 3-3-3 C-S-A系統添加ZnO配比調配 32 3-4 C-S-A系統燒成製備 32 3-4-1 C-S-A系統燒製條件設計 32 3-4-2 燒製熟料研磨 33 3-5 熟料測試 33 3-5-1 X-ray powder diffraction analysis 33 3-5-2 熱重分析儀測試 35 3-5-3 熟料抗壓強度測試 36 3-5-4 ZnO固相分布測定 37 第四章 結果與討論 39 4-1 C-S-A系統晶相分析 39 4-1-1 晶相強度半定量線性分析 39 4-1-2 單純C-S-A系統晶相分析 39 4-1-3 替代鋁系C-S-A系統晶相分析 42 4-1-4 添加ZnO之C-S-A系統晶相分析 46 4-1-5 小結 49 4-2 C-S-A系統熟料free CaO測定 67 4-2-1 free CaO測定 67 4-2-2 單純C-S-A系統free CaO測定 67 4-2-3 添加ZnO之C-S-A系統free CaO測定 68 4-2-4 小結 68 4-3 C-S-A系統燒製熟料之水化反應 69 4-3-1 單純C-S-A系統熟料之水化反應 69 4-3-2 添加ZnO C-S-A系統熟料之水化反應 70 4-3-3 小結 70 4-4 ZnO於C-S-A系統燒製熟料固相中之分布 76 第五章 結論與建議 81 5-1結論 81 5-2建議 83 參考文獻 84 表目錄 表2-2-1卜特蘭水泥原(生)料的來源 14 表2-2-2 水泥熟料之成分簡稱 15 表2-2-3 水泥廠生料燒成之溫度與時間控制 16 表2-2-4 水泥熟料燒成反應過程(1450ºC~1500ºC) 21 表3-3-1 單純C-S-A 系統各配比莫耳摻合比例 30 表3-3-2 替代鋁系C-S-A 系統各配比摻合比例 31 表3-5-1 抗壓強度水泥墁料級配標準砂 37 表3-5-2 不同試驗齡期之容許時間差 37 表4-1-1單純C-S-A與替代鋁系C-S-A系統晶相強度比較 45 表4-1-2單純C-S-A與ZnO添加C-S-A系統晶相 強度比較 48 表4-2-1 各配比LSF計算 73 表4-4-1 各配比矽氧係數計算 80 圖目錄 圖2-1-1 灰渣之處理及處置技術體系 4 圖2-1-2 無機廢棄物資源化技術 5 圖2-1-3 典型焚化爐灰渣燒結製磚流程 7 圖2-1-4 垃圾焚化灰渣燒結骨材製備流程 7 圖2-2-1 典型之水泥廠製程 17 圖3-1-1 實驗流程圖 27 圖3-3-1 單純C-S-A 系統配比設計 30 圖3-3-2 替代鋁系C-S-A 系統配比設計 31 圖4-1-1 SiO2、LiF半定量線性分析XRD晶相圖 40 圖4-1-2 LiF/SiO2半定量線性關係 40 圖4-1-3 C-S-A系統Batch 1(1C0S0A0) XRD晶相圖 50 圖4-1-4 C-S-A系統Batch 2(2C1S0A0) XRD晶相圖 51 圖4-1-5 C-S-A系統Batch 3(1C2S0A0) XRD晶相圖 52 圖4-1-6 C-S-A系統Batch 4(0C1S0A0) XRD晶相圖 53 圖4-1-7 C-S-A系統Batch 5(0C2S1A0) XRD晶相圖 54 圖4-1-8 C-S-A系統Batch 6(0C1S2A0) XRD晶相圖 55 圖4-1-9 C-S-A系統Batch 7(0C0S1A0) XRD晶相圖 56 圖4-1-10 C-S-A系統Batch 8(1C0S2A0) XRD晶相圖 57 圖4-1-11 C-S-A系統Batch 9(2C0S1A0) XRD晶相圖 58 圖4-1-12 C-S-A系統Batch 10(1C1S1A0) XRD晶相圖 59 圖4-1-13 C-S-A系統Batch 11(4C1S1A0) XRD晶相圖 60 圖4-1-14 C-S-A系統Batch 12(1C4S1A0) XRD晶相圖 61 圖4-1-15 C-S-A系統Batch 13(1C1S4A0) XRD晶相圖 62 圖4-1-16 C-S-A系統Batch 14(2C5S5A0) XRD晶相圖 63 圖4-1-17 C-S-A系統Batch 15(5C2S5A0) XRD晶相圖 64 圖4-1-18 C-S-A系統Batch 16(5C5S2A0) XRD晶相圖 65 圖4-1-19 System CaO-SiO2-Al2O3 composite 66 圖4-2-1 Ca(OH)2/CaO 轉化率 73 圖4-3-1 CaO:SiO2莫耳比3:2 (Batch2(2C1S0A0))水化反應 74 圖4-3-2 CaO:SiO2:Al2O3莫耳比7:15:15 (Batch11(4C1S1A0)) 水化反應 74 圖4-3-3 CaO:Al2O3莫耳比2:3 (Batch8(1C0S2A0))水化反應 75 圖4-3-4 CaO: Al2O3莫耳比3:2 (Batch9(2C0S1A0))水化反應 75 圖4-4-1 Zn在C-S-A系統燒成熟料固相中殘留率 (添加1%ZnO) 78 圖4-4-2 Zn在C-S-A系統燒成熟料固相中殘留率 (添加3%ZnO) 78 圖4-4-3 Zn在C-S-A系統燒成熟料固相中殘留率 (添加5%ZnO) 79 圖4-4-4 Zn在C-S-A系統燒成熟料固相中殘留率 (添加10%ZnO) 79 圖4-4-5 鈣鋁矽系統矽氧係數(SR)分佈圖 80

    參考文獻
    王鯤生、林凱隆、黃尊謙、李宗彥,“都市垃圾焚化飛灰熔渣粉體在水泥中之反應性研究”,第十五屆廢棄物處理技術研討會論文集,2000。
    張祖恩、林宗曾、許琦、賴進興、柯明賢、施百鴻,“中鋼公司轉爐及熱軋礦泥作為水泥副原料資源化再利用之研究”,中國鋼鐵股份有限公司研究報告,1998。
    張祖恩、林宗曾、許琦、賴進興、柯明賢、施百鴻,“中鋼公司高爐礦泥(二)資源化再利用之研究”,中國鋼鐵股份有限公司研究報告,1999。
    張祖恩、蔣立中、施百鴻、蘇俊賓,“焚化底渣再利用作為水泥原料之可行性研究”,第十五屆廢棄物處理技術研討會論文集,2000。
    郭子豪,「經前處理垃圾焚化底灰作為水泥原料之研究」,碩士論文,國立成功大學環境工程研究所,台南(2001)
    郭淑德,“飛灰與工業廢棄物固化為輕質混凝土之開發研究, 飛灰利用之研究(貳)”,台電公司電力綜合研究所,1987。
    郭淑德,“飛灰資源化,礦業技術”,29卷4期,299-315,1991。
    郭淑德、許讚全、蔡玲美、謝清白,“煤灰利用或棄置理可能對環境之衝擊調查研究”,台電工程月刊,444期,44-51,1985。
    陳永輝,「焚化灰渣與水庫淤泥混合燒製建築用磚之研究」,國立成功大學資源工程研究所碩士論文,(1999)。
    黃兆龍,「混凝土性質與行為」,詹氏書局出版,(1999)。
    黃榮吾,「土木材料」,三民書局出版,(1995)。
    楊萬發,電鍍污泥回收鉻鹽之方法(專利權證書號086998)(1997)
    廖錦聰,「從日本的經驗談台灣焚化灰渣資源化之方向」,一般廢棄物焚化灰渣資源化技術研討會專輯, 第13~28頁,(1996)。
    廖錦聰,鉻污泥無害化處理(專利權證書號044928)(1991)
    潘時正、劉澤融、曾迪華,“工業廢水污泥灰渣再利用於水泥砂漿之研究”,第十五屆廢棄物處理技術研討會論文集,2000。
    蘇俊賓,“焚化底灰作為水泥替代原料可行性之研究”,成功大學碩士論文,2000。
    龔人俠,「水泥化學概論」,台灣水泥工業同業工會,(1977)。
    中國國家標準CNS 1010【水硬性水泥墁料抗壓強度檢驗法】
    中國國家標準CNS 1012【流動性台及流動性模】
    Ajiwe, V. I. E., Okeke, C. A. and Akigwe, F. C. A preliminary study of manufacture of cement from rice husk ash. Bioresource Technology 73, 37-39, (2000).
    Ampadu, K. O., Torii, K. and Kawamura, M. Beneficial effect of fly ash on chloride diffusivity of hardened cement paste. Cement and Concrete Research 29, 585-590, (1999).
    Beretka, J., Cioffi, R., Santoro, L. and Valenti, G. Cementitious mixtures containing industrial process wastes suitable for the manufacture of preformed building elements. J. Chem. Tech. Biotechnol. 59, 243-247, (1994).
    Beretka, J., Vito, B., Santoro, L., Sherman, N. and Valenti, G. L. Utilization of industrial wastes and by-products for the synthesis of special cements. Resources, Conservation and Recycling 9(9), 179-190, (1993).
    Bordoloi, D., Baruah, A.C., Barkakati, P. and Borthakur, P. H. Influence of ZnO on clinkerization and properties of vsk cement. Cement and Concrete Research 28(3), 329-333, (1998).
    Cheriaf, M., Rocha, J. C. and Péra, J. Pozzolanic properties of pulverized coal combustion bottom ash. Cement and Concrete Research 29, 1387-1391, (1999).
    Demirbas, A. and Karslioglu, S. The effect of boric acid sludges containing borogypsum on properties of cement. Cement and Concrete Research, 25 (7), 1381-1384, (1995).
    Diouri A., Boukhari A., Aride J., Puertas, F. and Vazquez T. Stable Ca3SiO5 solid solution containing manganese and phosphorus. Cement and Concrete Research 27(8), 1203-1212, (1997).
    Fan, Y., Yin, S., Wen, Z. and Zhong, J. Activation of fly ash and its effects on cement properties. Cement and Concrete Research 29, 467-472, (1999).
    He, C., Makovicky, E. and Osbæck, B. Thermal stability and pozzolanic activity of raw and calcuned mixed-layer mica / smectite. Applied Clay Science 17, 141-161, (2000).
    Kakali, G. and Parissakis, G. Investigation of the effect of Zn Oxide on the formation of Portland cement clinker. Cement and Concrete Research 25(1), 79-85, (1995).
    Kakali, G., Parissakis, G. and Bouras, D. A study on the burnability and the phase formation of PC clinker containing Cu oxide. Cement and Concrete Research 26(10), 1473-1478, (1996).
    Kakali, G., Tsivilis, S. and Tsialtas A. Hydration of ordinary Portland cements made from raw mix containing transition element oxides. Cement and Concrete Research 28(3), 335-340, (1998).
    Katyal N.K., Ahluwalia S.C. and Parkash R. Effect of Cr2O3 on the C3S in 3CaO:1SiO2:χCr2O3 system. Cement and Concrete Research 30, 1361-1365, (2000).
    Mangialardi,T., Piga, L., Schena, G. and Sirini, P. Characteristics of msw incinerator ash for use in concrete. Environmental Engineering Science 15(4), (1998).
    Miller, F. M. Emerging technologies for utilizing waste in cement production. World Cement 25(1), 49-51, (1994).
    Monshi, A. and Asgarani, M. K. Producing portland cement from iron and steel slaga and limestone. Cement and Concrete Research, 29, 1373-1377, (1999).
    Mowla, D., Jahanmiri, A. and Fallahi, H. R. Preparation and optimization of alinite cement in various temperatures and CaCl2 content. Chemical Engineering Communications 171, 1-13, (1999).
    Muart, M. and Sorrentino, F. Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement. Cement and Concrete Research 26(3), 377-385, (1996).
    Osborn, E. F. and Muan, A. revised and redrawn “Phase Equilibrium Diagrams of Oxide Systems,” Plate 1, published by the American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation, (1960).
    Poon, C. S., Lam, L. and Wong, Y. L. A study on high strength concrete prepared with large volumes calcium fly ash. Cement and Concrete Research 30, 447-455, (2000).
    Randall, M. German “Sintering Theory and Practice”, New York, Wiley, (1996).
    Robert, J., Schreiber, J. and Yonley, C. Use of spent catalyst as a raw material substitute in cement manufacturing. American Chemical Society-Division of Petroleum Chemistry 38(1), 97-99, (1993).
    Roy, D. M. Alkali-activated cements opportunities and challenges. Cement and Concrete Research 29, 249-254, (1999).
    Shoaib,M. M., Balaha, M. M. and Abdel-Rahman, A. G. Influence of cement kiln dust substitution on the mechanical properties of concrete. Cement and Concrete Research 30, 371-377, (2000).
    Stephan, D., Maleki, H., Knöfel, D., Eber, B. and Härdtl, R. Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part I. C3S. Cement and Concrete Research 29, 545-552, (1999).
    Stephan, D., Maleki, H., Knöfel, D., Eber, B. and Härdtl, R. Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part Π. C3A and C4AF. Cement and Concrete Research 29, 651-657, (1999).
    Stephan, D., Mallmann, R., knöfel, D. and Härdtl R. High intakes of Cr, Ni, and Zn in clinker Part I. Influence on burning process and formation of phases. Cement and Concrete Research 29, 1949-1957, (1999).
    Stephan, D., Mallmann, R., knöfel, D. and Härdtl R. High intakes of Cr, Ni, and Zn in clinker Part Π. Influence on the hydration properties. Cement and Concrete Research 29, 1959-1967, (1999).
    Tay, J. H. and Show, K. Y. Utilization of ashes from oil-palm wastes as a cement replacement material. Wat. Sci. Tech. 34(11), 185-192, (1996).
    Uchikawa, H. and Obana, H. Ecocement-frontier of recycling of urban composite wastes. World Cement 26(11), 33-40, (1995).

    下載圖示 校內:2003-09-02公開
    校外:2003-09-02公開
    QR CODE