簡易檢索 / 詳目顯示

研究生: 江宗達
Jiang, Zong-Da
論文名稱: NuA4 complex在DNA雙股斷裂修復以及轉錄之功能探討
The function of NuA4 complex in the DNA double-strand break repair and transcription
指導教授: 廖鴻鈞
Liaw, Hung-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: 雙股斷裂酵母菌組蛋白修飾轉錄功能複製後修復
外文關鍵詞: DSB, NuA4, H3K4me2, H3K4me3, transcription, PRR
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA的雙股斷裂對於基因體的完整性是非常嚴重的傷害,若是雙股斷裂的修復路徑失去功能則會導致基因體的不穩定(genomic instability)以及癌症。在酵母Saccharomyces cerevisiae中,NuA4會被召引到雙股斷裂上,並且對H2A以及H4做乙醯化(acetylation),乙醯化可以讓染色體結構變的鬆散並且讓修復蛋白能夠結合到斷裂點。NuA4包含兩個次蛋白(subunit) YNG2以及EAF3,其中Yng2包含 plant homeodomain(PHD domain),而Eaf3包含Chromodomain,分別能夠和甲基化的組蛋白H3K4me3以及H3K36me相互作用,先前的實驗顯示Chromodomain (eaf3-chromoW84/88A)以及PHD domain (yng2-PHD)雙突變酵母在生長和雙股斷裂的修復上有缺陷。在這裡,我們發現組蛋白修飾H3K4me2以及H3K4me3在DNA雙股斷裂處有大量上升,說明PHD domain以及chromodomain能夠和H3K4me2以及H3K4me3相互作用,因此召引NuA4到雙股斷裂處。此外我們觀察到eaf3-chromoW84/88A yng2-∆PHD雙突變酵母在生長上有缺陷,我們也發現在eaf3-chromoW84/88A yng2-∆PHD雙突變酵母中核醣體蛋白(ribosomal protein)有表現量下降的情況。由於在細胞中,合成核糖體(ribosome)會用掉大約90%的能量,這結果說明我們觀察到eaf3-chromoW84/88A /yng2-∆PHD雙突變酵母有生長缺陷可能是因為轉錄核糖體蛋白的功能受到影響,而導致核糖體蛋白表現量下降,進而造成生長上的缺陷。我們的結果證明PHD domain以及chromodomain和甲基化的H3K4有相互作用,且甲基化的H3K4不管是在轉錄還是修復雙股斷裂的功能上都扮演非常重要的角色。
    自從我們發現組蛋白修飾(histone modifiction)包含H2A-S129p、H3K4me2、H3K4me3、H3K36me2以及H4K12ac,這些組蛋白修飾會特別出現在雙股斷裂附近,因此我們測試另外一條修復路徑"複製後修復"(post-replication repair, PRR)是否也會有組蛋白的修飾。PRR路徑是一條能夠讓細胞在複製碰到錯誤時可以先通過這些錯誤(bypass),先完成複製後再去修復錯誤。PRR可以分成兩條路徑,translesion synthesis (TLS)以及template-switching (TS)。在先前研究顯示DOT1能夠對TLS路徑進行負調控(negatively regulates),然而在TS路徑中組蛋白的修飾卻仍然不清楚。在這裡我們證明在rad5酵母中在將SET1、SET2、DOT1進行基因剔除後,再用UV、MMS、HU處裡並不影響TS路徑,說明組蛋白的修飾在TS路徑並不是必須的。
    總結以上結果,組蛋白修飾包含H2A-S129p、H3K4me2、H3K4me3、H3K36me2以及H4K12ac,這些修飾對於雙股斷裂都扮演很重要的角色。H2A-S129p以及H3K4能夠和NuA4的actin-related、PHD domain以及Chromodomain相互作用,因此NuA4能夠被召引到雙股斷裂處並促進雙股斷裂的修復。相反的,這些組蛋白的修飾對於PRR路徑的TS路徑並不是必需的,雖然先前有文獻指出DOT1有參與在TLS路徑中。

    DNA double strand breaks (DSBs) are the most dangerous lesions that threat the integrity of genome. Failure to repair DSBs properly can lead to genomic instability and cancer. In yeast Saccharomyces cerevisiae, the histone acetyltransferase, NuA4 complex is recruited to DSBs where it acetylate H2A and H4. This modification can relax chromatin structure and allow the access of repair proteins to DSBs. Two subunit of NuA4, YNG2 and EAF3, that contain the plant homeodomain (PHD) and chromodomain can interact with trimethylated K4 of histone H3 (H3K4me3) and methylated K36 of histone H3 (H3K36me) respectively in vitro. Previous studies have shown that mutations both in the chromodomain (eaf3-chromodW84/88A) and PHD (yng2-PHD) after defective in cell growth and the DSB repair. Here, we demonstrated that high level of H3K4me2 and H3K4me3 are enriched at HO cleavage site, suggesting the induced H3K4me2 and H3K4me3 can be docking site for the PHD and chromodomain, thus recruiting NuA4 at the DSB site. Since the eaf3-chromoW84/88A yng2-∆PHD double mutant strain defective in cell growth, we discover that the transcription level of several ribosomal protein is dramatically reduced in the eaf3-chromoW84/88A yng2-∆PHD double mutant strain. Given that ribosome synthesis utilizes~90% of the energy in the cell, the growth defect conferred by the eaf3-chromoW84/88A yng2-∆PHD double mutant strain could be due to the low transcription of ribosome protein. Our result demonstrated that the combined interaction of the PHD and chromodomain with methylated H3K4 plays important roles both in transcription and DSB repair.
    Since we discovered that histone modifications including H2A-S129p, H3K4me2, H3K4me3, H3K36me2, and H4K12ac are specifically induced around the DSB site, we tested whether the other repair pathway, postreplication repair (PRR), require histone modification.
    PRR is the damage bypass mechanism that allows cells to complete DNA replication in presence of DNA lesions. PRR can be divided into two subpathways, translesion synthesis (TLS) and template-switching (TS) pathways. Previous studies have demonstrated that Dot1 negatively regulates TLS in response to replication stress, however, it remains unclear whether histone modifications are involved in the TS pathway. Here we demonstrated that deletion of SET1, SET2, and DOT1 has no significant effect on the TS pathway, suggesting histone modifications are dispensable for the TS pathway.
    In summary, histone modifications including H2A-S129p, H4K12ac, H3K4me2, and H3K4me3 play an important role in DSB repair. The modified histone H2A-S129p and methylated H3K4 serves as the binding sites for the actin-related, PHD and chromodomain of NuA4 complexes, thus recruiting NuA4 complex at the DSB sits to facilitate DSB repair. By contrast, these histone modifications are dispensable for the TS pathway of PRR, despite of the involvement of DOT1 in the TLS pathway of PRR.

    中文摘要 1 Abstract 4 誌謝 6 目次 7 圖目錄 9 縮寫表 10 第一章 前言 11 1-1.酵母(Saccharomyces cerevisiae)細胞中的DNA損傷反應(DNA damaged response) 11 1-2.組蛋白(Histone)在雙股斷裂(DSB)中的修飾 14 1-3. NuA4在雙股斷裂時能夠調控染色體重構(chromatin remodeling) 15 1-4. NuA4複合體的次蛋白YNG2、EAF3具有特殊區域 16 1-5. NuA4複合體會參與在轉錄(Transcription)過程中 16 1-6.複製後修復路徑(Post-replication repair, PRR) 17 1-7.參與PRR路徑的基因Dot1、Set1、Set2以及Rad5 19 第二章 實驗目的 20 第三章 實驗方法 21 3-1. ChIP : Chromatin immunoprecipitation(染色質免疫沉澱法) 21 3-2.酵母的轉型作用 26 3-3.酵母的質體萃取 27 3-4. H3K4R、H3K79R點突變酵母的製備 27 3-5. DOT1、SET1、SET2基因剔除酵母的製備 28 3-6. DNA damage sensitivity assay(spot assay) 29 3-7. Plasmid construct的製備 30 3-8.酵母RNA的萃取 31 3-9.使用的酵母菌株表 32 第四章 結果 34 4-1.當DNA損傷後,在YNG2/EAF3酵母中H4K12ac大量累積在DNA雙股斷裂處 34 4-2.當DNA產生雙股斷裂的損傷後H3K4me2以及H3K4me3訊號在YNG2/EAF3酵母中明顯上升 35 4-3. set1剔除酵母對於DNA雙股斷裂藥物有較高的敏感性 36 4-4. H3K4R點突變酵母對於DNA雙股斷裂藥物有特別的敏感性,但是H3K79R對DNA雙股 斷裂藥物卻沒有任何效應 37 4-5. eaf3-chromoW84/88A yng2-∆PHD雙突變酵母在轉錄功能上也是有缺陷的 38 4-6. rad5剔除菌株對於UV、MMS以及 hydroxyurea有非常高的敏感性 .39 4-7. set2剔除酵母對於UV以及MMS並沒有敏感性 41 第五章 討論 42 5-1. Set1以及Set2在修復上的功能 43 5-2. H3K4R點突變酵母對於雙股斷裂的修復有缺陷 44 5-3. eaf3-chromoW84/88A yng2-∆PHD雙突變酵母在轉錄功能的缺陷 45 5-4. RAD5、DOT1、SET1、SET2在複製後修復中的功能 46 參考文獻 48

    1. Alexander W. Bird, D.Y.Y., Marilyn G. Pray-Grant, Qifeng
    Qiu,, P.C.M. Kirsty E.Harmon, Patrick A. Grant,M.
    Mitchell Smith, and M.F. Christman*k. Acetylation of
    histone H4 by Esa1 is required for DNA double-strand
    break repair. Nature. 419:407-411. (2002).
    2. Bi, X., L.R. Barkley, D.M. Slater, S. Tateishi, M.
    Yamaizumi, H. Ohmori, and C. Vaziri. Rad18 regulates DNA
    polymerase kappa and is required for recovery from S-
    phase checkpoint-mediated arrest. Molecular and cellular
    biology. 26:3527-3540. (2006) .
    3. Celeste, A., O. Fernandez-Capetillo, M.J. Kruhlak, D.R.
    Pilch, D.W. Staudt, A. Lee, R.F. Bonner, W.M. Bonner, and
    A. Nussenzweig. Histone H2AX phosphorylation is
    dispensable for the initial recognition of DNA breaks.
    Nature Cell Biology. 5:675-679. (2003).
    4. Chapman, J.R., M.R. Taylor, and S.J. Boulton. Playing the
    end game: DNA double-strand break repair pathway choice.
    Mol Cell. 47:497-510. 2012.
    5. Decker, P.V., D.Y. Yu, M. Iizuka, Q. Qiu, and M.M. Smith.
    Catalytic-site mutations in the MYST family histone
    Acetyltransferase Esa1. Genetics. 178:1209-1220.(2008).
    6. Downs, J.A., S. Allard, O. Jobin-Robitaille, A. Javaheri,
    A. Auger, N. Bouchard, S.J. Kron, S.P. Jackson, and J.
    Cote. Binding of chromatin-modifying activities to
    phosphorylated histone H2A at DNA damage sites. Mol Cell.
    16:979-990. (2004).
    7. Faucher, D., and R.J. Wellinger. Methylated H3K4, a
    transcription-associated histone modification, is
    involved in the DNA damage response pathway. PLoS
    genetics. 6. (2010).
    8. Haico van Attikum1, O.F.a., and S.M. Gasser. Distinct
    roles for SWR1 and INO80 chromatin remodeling complexes
    at chromosomal double-strand breaks. 26. (2007).
    9. Halas, A., A. Podlaska, J. Derkacz, J. McIntyre, A.
    Skoneczna, and E. Sledziewska-Gojska. The roles of PCNA
    SUMOylation, Mms2-Ubc13 and Rad5 in translesion DNA
    synthesis in Saccharomyces cerevisiae.
    Molecular microbiology. 80:786-797. (2011).
    10. Harrison, J.C., and J.E. Haber. Surviving the breakup:
    The DNA damage checkpoint. In Annual Review of Genetics.
    Vol. 40. Annual Reviews, Palo Alto. 209-235.(2006).
    11. Joshi, A.A., and K. Struhl. Eaf3 chromodomain
    interaction with methylated H3-K36 links histone
    deacetylation to Pol II elongation. Mol Cell. 20:971-
    978.
    12. Kouzarides, T. Chromatin modifications and their
    function. Cell. 128:693-705. (2007).

    13. Levesque, N., G.P. Leung, A.K. Fok, T.I. Schmidt, and
    M.S. Kobor. Loss of H3 K79 trimethylation leads to
    suppression of Rtt107-dependent DNA damage
    sensitivity through the translesion synthesis pathway.
    The Journal of biological chemistry. 285:35113-35122.
    (2010).
    14. Limbo, O., M.E. Porter-Goff, N. Rhind, and P. Russell.
    Mre11 nuclease activity and Ctp1 regulate Chk1
    activation by Rad3ATR and Tel1ATM checkpoint kinases
    at double-strand breaks. Molecular and cellular biology.
    31:573-583. (2011).
    15. Mitchell, L., J.P. Lambert, M. Gerdes, A.S. Al-Madhoun,
    I.S. Skerjanc, D. Figeys, and K. Baetz. Functional
    dissection of the NuA4 histone acetyltransferase
    reveals its role as a genetic hub and that Eaf1 is
    essential for complex integrity. Molecular and cellular
    biology. 28:2244-2256. (2008).
    16. Price, B.D., and A.D. D'Andrea. Chromatin remodeling at
    DNA double-strand breaks. Cell. 152:1344-1354. (2013).
    17. Rando, O.J., and F. Winston. Chromatin and transcription
    in yeast. Genetics. 190:351-387. (2012).
    18. Reid, J.L., V.R. Iyer, P.O. Brown, and K. Struhl.
    Coordinate Regulation of Yeast Ribosomal Protein Genes
    Is Associated with Targeted Recruitment of Esa1
    Histone Acetylase. Molecular cell. 6:1297-1307. (2000).
    19. Rogakou, E.P., C. Boon, C. Redon, and W.M. Bonner.
    Megabase Chromatin Domains Involved in DNA Double-Strand
    Breaks in Vivo. The Journal of Cell
    Biology. 146:905-916. (1999).
    20. Santos-Rosa, H., R. Schneider, A.J. Bannister, J.
    Sherriff, B.E. Bernstein, N.C. Emre, S.L. Schreiber, J.
    Mellor, and T. Kouzarides. Active genes are
    tri-methylated at K4 of histone H3. Nature. 419:407-411.
    (2002).
    21. Schulze, J.M., A.Y. Wang, and M.S. Kobor. Reading
    chromatin: Insights from yeast into YEATS domain
    structure and function. Epigenetics. 5:573-577. (2010).
    22. Schwartz, M.F., J.K. Duong, Z. Sun, J.S. Morrow, D.
    Pradhan, and D.F. Stern. Rad9 Phosphorylation Sites
    Couple Rad53 to the Saccharomyces cerevisiae
    DNA Damage Checkpoint. Molecular cell. 9:1055-1065.
    (2002).
    23. Sharma, S., and S.C. Raghavan. Nonhomologous DNA end
    joining in cell-free extracts. Journal of nucleic acids.
    2010. (2010).
    24. Shi, X., T. Hong, K.L. Walter, M. Ewalt, E. Michishita,
    T. Hung, D. Carney, P. Pena, F. Lan, M.R. Kaadige, N.
    Lacoste, C. Cayrou, F. Davrazou, A. Saha, B.R.
    Cairns, D.E. Ayer, T.G. Kutateladze, Y. Shi, J. Cote,
    K.F. Chua, and O. Gozani. ING2 PHD domain links histone
    H3 lysine 4 methylation to active gene repression.
    Nature (London). 442:96-99. (2006).
    25. Shim, E.Y., W.H. Chung, M.L. Nicolette, Y. Zhang, M.
    Davis, Z. Zhu, T.T. Paull, G. Ira, and S.E. Lee.
    Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku
    proteins regulate association of Exo1 and Dna2 with DNA
    breaks. The EMBO journal. 29:3370-3380. (2010).
    26. Shroff, R., A. Arbel-Eden, D. Pilch, G. Ira, W.M.
    Bonner, J.H. Petrini, J.E. Haber, and M. Lichten.
    Distribution and Dynamics of Chromatin Modification
    Induced by a Defined DNA Double-Strand Break. Current
    biology : CB. 14:1703-1711. (2004).
    27. Ulrich, H.D. The RAD6 Pathway: Control of DNA Damage
    Bypass and Mutagenesis by Ubiquitin and SUMO.
    ChemBioChem. 6:1735-1743. (2005).

    下載圖示 校內:2015-08-27公開
    校外:2015-08-27公開
    QR CODE