| 研究生: |
劉醇韋 Liou, Chun-Wei |
|---|---|
| 論文名稱: |
多功能性高分子混和微胞之細胞毒性測試與生物螢光影像應用 Multifunctional Polymeric Mixed Micelles: Cytotoxicity Test and Bioimaging Application |
| 指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 雙親性嵌段共聚高分子 、溫度響應高分子 、酸鹼值敏感性質高分子 、葉酸 、聚集誘發螢光 、藥物釋放 、細胞毒性 、螢光標記 |
| 外文關鍵詞: | amphiphilic block copolymer, thermo-responsive polymer, pH-responsive polymer, aggregation-induced emission, folic acid, active target, bioimaging |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對三組具特殊功能性官能基之雙親性嵌段共聚高分子Poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- 6-(methacrylamido)hexanoic acid] [PCL-b-P(TEGMA-co-AHA)]、Poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- N-(2-(methacrylamido)ethyl) folatic amide] [PCL-b-P(TEGMA-co-FA)]與Poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- (2-(1,2,3,4,5-pentaphenyl-1H-silol-1-yloxy)ethyl methacrylate)] [PCL-b-P(TEGMA-co-(PPS-HEMA))]於水中利用透析法形成的高分子混合微胞進行奈米結構、環境應答、標靶功能、細胞毒性以及生物螢光標記功能之探討與檢測。
以PCL為疏水性鏈段形成微胞內核,以具有溫度敏感性質之親水性單體TEGMA形成微胞外殼,內核可包覆疏水性藥物Doxorubicin(DOX),外殼因親水性可具有較好溶解度於血液中,親水性鏈段TEGMA上另外接有酸鹼響應單體AHA、主動式標靶功能葉酸(FA)以及具螢光特性單體PPS-HEMA,使其具有特定功能。
經由調整具酸鹼值響應單體AHA所占比例以及各組雙親性嵌段高分子之比例可以調整混和微胞的最低臨界溶解溫度(lower critical solution temperature, LCST),使LCST於酸性環境低於體溫37℃,於中性環境下高於體溫37℃分別對應癌細胞中溶酶體環境以及正常人體血液環境之酸鹼值,達到在血液中穩定包覆不釋放DOX在癌細胞中迅速釋放藥物之目的。親水性鏈段修飾上葉酸(FA)可與癌細胞表面葉酸受體結合,使藥物具有主動式標靶功能,更加有效進入癌細胞內。PPS-HEMA單體具有AIE螢光性質,具有與藥物DOX重疊之吸收光譜,當兩者距離足夠接近即產生Föster Resonance Energy Transfer (FRET)現象,利用此現象可以作為判斷藥物是否包覆或是釋放的依據,也可以用來作為藥物載體之螢光標記,觀察是否進入癌細胞內。
In this research, we will investigated the nanosturctures ,stimuli-responsive ,fluorescence ,active targeting properties ,cytotoxicity for tumor cells and Bioimaging application of the multifunctional polymeric mixed micelles. The mixed micelles were co-assembled of three amphiphilic copolymers, [PCL-b-P(TEGMA-co-FA)], [PCL-b-P(TEGMA-co-AHA)] and [PCL-b-P(TEGMA-co-(PPS-HEMA))]. PCL is hydrophobic block as core of micelle to load hydrophobic drug, Doxorubicin (DOX). PTEGMA is thermo-sensitive polymer as hydrophilic shell of micelle to control the LCST of amphiphilic copolymers. In addition, we introduced pH-sensitive (AHA), active targeting (FA) and fluorescent (PPS-HEMA) moieties to hydrophilic block by copolymerization of these monomers with TEGMA, respectively. With control the composition of AHA and PTEGMA, the LCST of mixed micelles is higher than body temperature (37℃) at neutral environment but lower than body temperature at acidic environment. Folic acid (FA) can be combined with folic acid receptor on the surface of cancer cells, so that the drug has active target function, more effective into the cancer cells. The FRET from PPS-HEMA moieties to Doxorubicin encapsulated in the micelle was observed that indicated a successful encapsulation of drug in the core of polymeric micelles. FRET phenomenon can be used as a basis for judging whether the drug is encapsulated or released and can also be used as a fluorescent marker for the drug carrier to see if it enters cancer cells by Endocytosis.
Keyword: amphiphilic block copolymer, thermo-responsive polymer, pH-responsive polymer, aggregation-induced emission, folic acid, active target, bioimaging
文獻回顧
1. Sun, Y., et al., Synthesis and characterization of pH-sensitive poly(itaconic acid)-poly(ethylene glycol)-folate-poly(l-histidine) micelles for enhancing tumor therapy and tunable drug release. J Colloid Interface Sci, 2015. 458: p. 119-29.
2. Hongzhuan Yin, Long Liao, and J. Fang, Enhanced Permeability and Retention (EPR) Effect Based Tumor Targeting: The Concept, Application and Prospect. 2014.
3. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2012. 64: p. 206-212.
4. Adamus, A., et al., Thermoresponsive poly[tri(ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation. Colloids Surf B Biointerfaces, 2016. 145: p. 185-93.
5. Chen, C.Y., et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013. 34(18): p. 4501-9.
6. Ito, S., et al., Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polymer Chemistry, 2014. 5(19): p. 5523.
7. Crotty, S., et al., Polymer architectures via mass spectrometry and hyphenated techniques: A review. Anal Chim Acta, 2016. 932: p. 1-21.
8. Letchford, K. and H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm, 2006. 65(3): p. 259-69.
9. Stephan Förster* and M. Antonietti, Amphiphilic Block Copolymers in StructureControlled Nanomaterial Hybrids. 1998.
10. Kazunori Kataoka, Atsushi Harada , and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. 2001.
11. Yu, Y., et al., A degradable brush polymer–drug conjugate for pH-responsive release of doxorubicin. Polym. Chem., 2015. 6(6): p. 953-961.
12. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. 2001.
13. Blanazs, A., S.P. Armes, and A.J. Ryan, Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol Rapid Commun, 2009. 30(4-5): p. 267-77.
14. ISRAELACHVIL, J.N., D.J. MITCHELL, and B.W. NINHA, Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. 1975.
15. Smart, T., et al., Block copolymer nanostructures. Nano Today, 2008. 3(3): p. 38-46.
16. Choucair, A. and A. Eisenberg, Control of amphiphilic block copolymer morphologies using solution conditions. The European Physical Journal E, 2003. 10(1): p. 37-44.
17. Yousefpour Marzbali, M. and A. Yari Khosroushahi, Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol, 2017. 79(4): p. 637-649.
18. Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 2012. 45(10): p. 4015-4039.
19. Matyjaszewski, K. and J. Xia, Atom transfer radical polymerization. Chemical reviews, 2001. 101(9): p. 2921-2990.
20. Patten, T.E. and K. Matyjaszewski, Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998. 10(12): p. 901-915.
21. Karimi, M., et al., Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016. 45(5): p. 1457-501.
22. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev, 2006. 58(15): p. 1655-70.
23. Y. Okahata, H. Noguchi, and T. Seki, Thermoselective Permeation from a Polymer-Grafted Capsule Membrane*. 1986.
24. Yan,, H., et al., Template-Guided Synthesis and Individual
Characterization of Poly(N-isopropylacrylamide)-Based Microgels. 2005.
25. Liu, R., M. Fraylich, and B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications. Colloid and Polymer Science, 2009. 287(6): p. 627-643.
26. Zardad, A.-Z., et al., A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers, 2016. 8(10): p. 359.
27. Dai, S., P. Ravi, and K.C. Tam, pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008. 4(3): p. 435-449.
28. Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003. 55(3): p. 329-347.
29. Gil, E. and S. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
30. Prabaharan, M., et al., Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials, 2009. 30(29): p. 5757-66.
31. Chen, C.-Y., et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013. 34(18): p. 4501-4509.
32. Leray, I. and B. Valeur, Calixarene-Based Fluorescent Molecular Sensors for Toxic Metals. European Journal of Inorganic Chemistry, 2009. 2009(24): p. 3525-3535.
33. Shimizu, M. and T. Hiyama, Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chemistry–An Asian Journal, 2010. 5(7): p. 1516-1531.
34. Valeur, B., Molecular Fluorescence: Principles and Applications,
Wiley-VCH, Weinheim. 2002. p.113
35. Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl, 2006. 45(28): p. 4562-89.
36. Li, C., et al., One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles. Biosens Bioelectron, 2017. 92: p. 335-341.
37. Li, Y., et al., Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean. Biosens Bioelectron, 2017. 92: p. 26-32.
38. Clapp, A.R., I.L. Medintz, and H. Mattoussi, Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem, 2006. 7(1): p. 47-57.
39. Wallrabe, H. and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol, 2005. 16(1): p. 19-27.
40. Zhao, C., et al., Forster Resonance Energy Transfer Switchable Self-Assembled Micellar Nanoprobe: Ratiometric Fluorescent Trapping of Endogenous H2S Generation via Fluvastatin-Stimulated Upregulation. J Am Chem Soc, 2015. 137(26): p. 8490-8.
41. Birks, J.B., Photophysics of aromatic molecules. 1970.
42. Hu, R., N.L. Leung, and B.Z. Tang, AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews, 2014. 43(13): p. 4494-4562.
43. Mei, J., et al., Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater, 2014. 26(31): p. 5429-79.
44. Chen, J.W., et al., Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chemistry of Materials, 2003. 15(7): p. 1535-1546.
45. Hong, Y., J.W.Y. Lam, and B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 2009(29): p. 4332-4353.
46. Junwu Chen, et al., Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. 2002.
47. An, B.-K., et al., Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. Journal of the American Chemical Society, 2002. 124(48): p. 14410-14415.
48. Hong, Y., J.W. Lam, and B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chemical communications, 2009(29): p. 4332-4353.
49. Zhang, C., et al., Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles). ACS Appl Mater Interfaces, 2014. 6(7): p. 5212-20.
50. Qin, A., J.W.Y. Lam, and B.Z. Tang, Luminogenic polymers with aggregation-induced emission characteristics. Progress in Polymer Science, 2012. 37(1): p. 182-209.
51. Qin, A., J.W. Lam, and B.Z. Tang, Luminogenic polymers with aggregation-induced emission characteristics. Progress in polymer science, 2012. 37(1): p. 182-209.
52. DAN DING, et al., Bioprobes Based on AIE Fluorogens. 2012.
53. Shi, H., et al., Fluorescent light-up probe with aggregation-induced emission characteristics for in vivo imaging of cell apoptosis. Org Biomol Chem, 2013. 11(42): p. 7289-96.
54. Zhou, Z., et al., Aggregation Induced Emission Mediated Controlled Release by Using a Built-In Functionalized Nanocluster with Theranostic Features. J Med Chem, 2016. 59(1): p. 410-8.
55. Torchilin, V.P., Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging. 2007.
56. Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-27.
57. Kazunori Kataoka , Atsushi Harada , and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. 2001.
58. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004. 56(11): p. 1649-59.
59. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 2010. 75(1): p. 1-18.
60. Stolnik, S., L. Illum, and S. Davis, Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 1995. 16(2): p. 195-214.
61. Nishiyama, N. and K. Kataoka, Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function, in Polymer Therapeutics II. 2006, Springer. p. 67-101.
62. Nishiyama, N. and K. Kataoka, Nanostructured devices based on block copolymer assemblies for drug delivery: Designing structures for enhanced drug function, in Polymer Therapeutics Ii: Polymers as Drugs, Conjugates and Gene Delivery Systems, R. SatchiFainaro and R. Duncan, Editors. 2006. p. 67-101.
63. Mishra, D., J.R. Hubenak, and A.B. Mathur, Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. Journal of Biomedical Materials Research Part A, 2013. 101(12): p. 3646-3660.
64. Zhang, L., et al., Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 2008. 83(5): p. 761-769.
65. Gaucher, G., et al., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release, 2005. 109(1): p. 169-188.
66. Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16(1): p. 3-27.
67. Jette, K.K., et al., Preparation and drug loading of poly (ethylene glycol)-block-poly (ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharmaceutical research, 2004. 21(7): p. 1184-1191.
68. Shi, M., J. Lu, and M.S. Shoichet, Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. Journal of Materials Chemistry, 2009. 19(31): p. 5485-5498.
69. Miyata, K., R.J. Christie, and K. Kataoka, Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 2011. 71(3): p. 227-234.
70. Nishiyama, N. and K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & therapeutics, 2006. 112(3): p. 630-648.
71. Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 2007. 32(8-9): p. 962-990.
72. Nakayama, M., J. Akimoto, and T. Okano, Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. Journal of drug targeting, 2014. 22(7): p. 584-599.
73. Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science, 2004. 29(12): p. 1173-1222.
74. Madhulika Pradhan, D.S., Manju Rawat Singh, Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. Journal of Controlled Release, 2013. 170(3): p. 380-395.
75. Mishra, D., J.R. Hubenak, and A.B. Mathur, Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J Biomed Mater Res A, 2013. 101(12): p. 3646-60.
76. Paul A. Vasey, et al., Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2Hydroxypropyl)methacrylamide Copolymer Doxorubicin]: First Member of a New Class of Chemotherapeutic Agents—Drug-Polymer Conjugates1. 1999.
77. Sanna, V., N. Pala, and M. Sechi, Targeted therapy using nanotechnology: focus on cancer. International journal of nanomedicine, 2014. 9: p. 467.
78. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12 Part 1): p. 6387-6392.
79. Kedar, U., et al., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(6): p. 714-729.
80. Ge, Z. and S. Liu, Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev, 2013. 42(17): p. 7289-325.
81. Chen, Y., et al., Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Adv., 2016. 6(94): p. 92073-92091.
82. Prabaharan, M., et al., Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials, 2009. 30(16): p. 3009-19.
83. Yang, L., et al., Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res, 2009. 26(10): p. 2332-42.
84. Ai, X., et al., Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian Journal of Pharmaceutical Sciences, 2014. 9(5): p. 244-250.
85. Chang, L., et al., pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly(ethylene glycol)-block-(polycaprolactone-graft-poly(methacrylic acid)) for oral drug delivery. Polym. Chem., 2013. 4(5): p. 1430-1438.
86. Gou, J., et al., Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances. Biomacromolecules, 2015. 16(9): p. 2920-9.
87. J.B Liu, Y.H.X., C. Allen, Polymer–Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. Journal of Pharmaceutical Sciences, 2004. 93(1): p. 132-143.
88. Li, H., et al., A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction. Macromol Rapid Commun, 2015. 36(20): p. 1841-9.
89. Liang, Y., et al., Terminal modification of polymeric micelles with pi-conjugated moieties for efficient anticancer drug delivery. Biomaterials, 2015. 71: p. 1-10.
90. Panja, S., et al., A branched polymer as a pH responsive nanocarrier: Synthesis, characterization and targeted delivery. Polymer, 2015. 61: p. 75-86.
91. Zhang, C.Y., et al., pH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Adv., 2014. 4(76): p. 40232-40240.
92. Sant, V.P., D. Smith, and J.C. Leroux, Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release, 2004. 97(2): p. 301-12.
93. Sarbu, T., et al., Synthesis of hydroxy-telechelic poly (methyl acrylate) and polystyrene by atom transfer radical coupling. Macromolecules, 2004. 37(26): p. 9694-9700.
94. Han, S., M. Hagiwara, and T. Ishizone, Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo (ethylene glycol) methyl ether methacrylates. Macromolecules, 2003. 36(22): p. 8312-8319.
95. Batz, H.G., G. Franzmann, and H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angewandte Chemie International Edition in English, 1972. 11(12): p. 1103-1104.
96. Jones, M.C. and J.C. Leroux, Polymeric micelles - a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics, 1999. 48(2): p. 101-111.
97. Jones, M.-C. and J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111.
98. Chen, J., et al., Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-tetraphenylsiloles. Chemistry of materials, 2003. 15(7): p. 1535-1546.
99. Sapra, P. and T.M. Allen, Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Research, 2002. 62(24): p. 7190-7194.
100. Gillies, E.R. and J.M. Fréchet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate chemistry, 2005. 16(2): p. 361-368.