| 研究生: |
麥守義 Mak, Sou-Yee |
|---|---|
| 論文名稱: |
磁性奈米吸附劑的製備與應用 Preparation and Applications of Magnetic Nano-Adsorbent |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 磁性 、奈米 、複合奈米粒子 、廢水處理 、吸附劑 |
| 外文關鍵詞: | wastewater treatment, nanocomposite, adsorbent, magnetic, nano |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關於聚丙烯酸(PAA)被覆的磁性奈米粒子在廢水處理及強酸型磁性奈米吸附劑的製備與應用之研究。首先探討PAA被覆的磁性奈米粒子在染料廢水褪色上的應用;其次利用化學修飾方法,進一步修飾PAA被覆的磁性奈米粒子,使表面具備磺酸根,並應用在重金屬離子的分離與回收;最後以硫化鈉處理負載有重金屬離子的磁性奈米吸附劑,可製備出雙功能的複合奈米粒子。
關於PAA被覆的磁性奈米粒子在染料廢水褪色上的研究,係在25℃下,以鹼性染料亞甲基藍(methylene blue,MB)作為研究範例。實驗結果顯示,磁性奈米吸附劑對鹼性染料亞甲基藍(methylene blue)的吸附及脫附具有很高的效率,其吸附行為遵守Langmuir恆溫吸附模式,最大吸附容量(qm)和Langmuir平衡常數(KL)分別為19.9 mg•g-1 與10.1 mL•mg-1;吸附量隨溶液的pH值增加而增加,當pH>7時,吸附量趨於一穩定值。另外,此吸附過程為一吸熱程序,其焓的變化量為30.9 kJ•mol-1;磁性奈米吸附劑所吸附的MB可利用含醋酸的甲醇溶液加以脫附。值得一提的是,由於沒有內部擴散阻力的問題,MB的吸附與脫附程序皆可於2分鐘內完成。
關於強酸型磁性奈米吸附劑的製備,係先製備表面被覆PAA的磁性奈米粒子,再藉由碳二醯胺的活化將胺基苯磺酸共價鍵結在氧化鐵奈米粒子上。穿透式電子顯微鏡(TEM)與動態光散射分析儀(DLS)之分析顯示,磺酸化之磁性奈米粒子具有單分散性,其平均粒徑為13.5 nm,平均水力直徑為21 nm。由X射線繞射儀(XRD)分析得知,磁性奈米粒子為四氧化三鐵之尖晶石結構,且不因固定化與磺酸化的程序而改變。此外,由磁性與界面電位分析儀量測得知,所得磁性奈米粒子具有超順磁性,其等電點為2.45。而由傅立葉轉換紅外線光譜儀(FTIR)之分析可確認表面被覆PAA的氧化鐵奈米粒子已被磺酸化。
關於強酸型磁性奈米吸附劑在水溶液中吸附重金屬離子的研究,係在30℃下,以二價鈷離子作為研究範例。實驗結果顯示,強酸型磁性奈米吸附劑對Co2+的吸附具有很高的效率,其吸附行為遵守Langmuir恆溫吸附模式,最大吸附容量(qm)和Langmuir平衡常數(KL)分別為0.513 mmol•g -1與1.60 L•mmol-1;吸附量隨溶液的pH值增加而增加,當pH>4時,吸附量趨於一穩定值。另外,此吸附過程為一吸熱程序,其焓的變化量為3.65 kJ•mol-1。值得一提的是,Co2+的吸附程序可於2分鐘內完成。
關於強酸型磁性奈米吸附劑製備雙功能複合奈米粒子的研究,係先利用強酸型磁性奈米吸附劑吸附鎘離子,再以硫化鈉使鎘離子沈澱,便可在磁性奈米粒子表面形成硫化鎘量子點。實驗結果顯示,強酸型磁性奈米吸附劑對Cd2+的吸附,其吸附行為遵守Langmuir恆溫吸附模式,最大吸附容量(qm)和Langmuir平衡常數(KL)分別為0.503 mmol•g-1與1.05 L•mmol-1。穿透式電子顯微鏡(TEM)與高解析穿透式電子顯微鏡(HRTEM)之分析顯示,強酸型磁性奈米吸附劑的型態與大小,並沒有受到鎘離子之吸附與沈澱反應的影響;而吸附劑表面形成的CdS奈米晶體之大小約為1 nm。此外,X射線能量散射分析儀(EDX)也證實吸附劑表面有Cd及S的存在。由X射線繞射儀分析得知,磁性奈米粒子為四氧化三鐵之尖晶石結構,並不因鎘離子之吸附與沈澱反應而改變。此外,紫外光/可見光光譜儀(UV/Vis)與光致發光光譜儀(PL)分析皆顯示硫化鎘量子點的生成。
This dissertation concerns the application of polyacrylic acid (PAA)-coated magnetic nano-adsorbent in wastewater treatment and the preparation of sulfonated magnetic nanoparticles as a strong acid cation magnetic nano-adsorbent. The adsorption of methylene blue (MB) from an aqueous solution by PAA-bound iron oxide magnetic nanoparticles was studied. Then the PAA-coated magnetic nanoparticles were further sulfonated by sulfanilic acid via carbodiimide activation and used for the recovery of heavy metal ions from aqueous solution. Finally, a magnetic luminescent nanocomposite was obtained by the adsorption of metal ions on the sulfonated iron oxide nanoparticles and the subsequent precipitation with sodium sulfide.
The adsorption of methylene blue (MB) from an aqueous solution by PAA-bound iron oxide magnetic nanoparticles was studied. It was shown that the novel magnetic nano-adsorbent was quite efficient for the adsorption/desorption of MB. In the aqueous solution of MB at 25C, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 0.199 mg•mg-1 and a Langmuir adsorption equilibrium constant of 10.1 mL•mg-1. The adsorption capacity increased with the increase in solution pH and reached a constant when pH > 7. The adsorption process was endothermic in nature with an enthalpy change (H) of 30.9 kJ•mol-1 at 10-40ºC. By using the methanol solution of acetic acid, the adsorbed MB could be desorbed. In addition, it was notable that both the adsorption and desorption of MB were quite fast and could be completed within 2 min due to the absence of internal diffusion resistance.
The strong acid cation magnetic nano-adsorbent was prepared by the sulfonation of PAA-coated magnetic nanoparticles via carbodiimide activation. Transmission electron microscopy (TEM) micrograph and dynamic light scattering (DLS) measurements showed that the sulfonated magnetic nanoparticles were mondisperse with a mean core diameter of 13.5 nm and a mean hydrodynamic diameter of 21 nm. X-ray diffraction (XRD) pattern indicated that the iron oxide nanoparticles were pure Fe3O4 with a spinel structure; it also revealed that the binding and sulfonation processes did not result in the phase change of Fe3O4 cores. In addition, the magnetic and zeta potential measurements showed that the sulfonated magnetic nanoparticles were superparamagnetic and the isoelectric point of the product was 2.45. The sulfonation of the PAA-coated magnetic nanoparticles was confirmed by FTIR analysis.
The adsorption of Co2+ ions from an aqueous solution by sulfonated magnetic nanoparticles was studied. It was shown that the novel magnetic nano-adsorbent was quite efficient for the adsorption of Co2+ ions. In the aqueous solution of Co2+ ions at 30C, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 0.513 mmol•g-1 and a Langmuir adsorption equilibrium constant of 1.60 L•mmol-1. The adsorption capacity increased with the increase in solution pH and reached a constant when pH > 4. The adsorption process was endothermic in nature with an enthalpy change (H) of 3.65 kJ•mol-1 at 15-40ºC. In addition, it was notable that the adsorption of Co2+ ions were quite fast and could be completed within 2 min due to the absence of internal diffusion resistance.
The fabrication of magnetic luminescent nanocomposites via adsorption-precipitation of cadmium ions on sulfonated iron oxide nanoparticles was studied. In the aqueous solution of Cd2+ ions at 30C, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 0.503 mmol•g-1 and a Langmuir adsorption equilibrium constant of 1.05 L•mmol-1. Transmission electron microscope micrograph of the magnetic luminescent nanocomposites showed that the morphologies were similar to that before the adsorption-precipitation of Cd2+ ions and the High resolution transmission electron microscope indicated the CdS nanocrystals of about 1 nm were formed on a sulfonated magnetic nanoparticle. In addition, the analysis of energy dispersive X-ray (EDX) spectrum revealed the presence of Cd and S on the particle surface. X-ray diffraction (XRD) pattern indicated that the iron oxide nanoparticles were pure Fe3O4 with a spinel structure; and the adsorption-precipitation processes do not result in the phase change of Fe3O4 cores. Both ultraviolet-visible (UV/Vis) and photoluminescence (PL) analyses confirmed the formation of magnetic luminescent nanocomposites.
1.Abudiab, T.; Jr, R. R. B. (1998) Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. J. Chromatogr. A 795, 211.
2.Ahn, C. H.; Choi, J. W.; Cho, H. J. (2004) Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.815-821.
3.Alamri, S. N.; Brinkman, A. W. (2000) The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells. J. Phys. D: Appl. Phys. 33, L1.
4.Aliev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Liz-Marzán, L. M.; Kotov, N. A. (1999) Layer-by-layer assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties. Adv. Mater. 11, 1006.
5.An, L. J.; Li, Z. Q.; Wang, Z.; Zhang, J. H.; Yang, B. (2005) Bifunctional Fe3O4/CdS nanocomposites synthesized by surface-initiated atom transfer radical polymerization. Chem. Lett. 34, 652.
6.Ariga, K. (2004) Layer-by-layer nanoarchitectonics. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.467-480.
7.Aylott, J. W.; Richardson, D. J.; Russell, D. A. (1997) Optical biosensing of gaseous nitric oxide using spin-coated sol-gel thin films. Chem. Mater. 9, 2261.
8.Ayyappan, S.; Gopalan, R. S.; Subbanna, G. N.; Rao, C. N. R. (1997) Nanoaprticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 12, 398.
9.Bahar, T.; Celebi, S. S. (1999) Immobilization of gluocoamylase on magnetic poly(styrene) particles. J. Appl. Polym. Sci. 72, 69.
10.Barker, S. L. R.; Kopelman, R.; Meyer, T. E.; Cusanovich, M. A. (1998) Fiber-optic nitric oxide-selective biosensors and nanosensors. Anal. Chem. 70, 971.
11.Battati, S.; Pioselli, B.; Campanini, B.; Viappiani, C.; Mozzarelli, A. (2004) Protein-doped nanoporous silica gels. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 9, pp.81-103.
12.Bethell, D.; Brust, M.; Schiffrin, D. J.; Kiely, C. (1996) From monolayers to nanostructured materials: an organic chemist's view of self-assembly J. Electroanalytical Chem. 409, 137.
13.Bílková, Z.; Slováková, M.; Horák, D.; Lenfeld, J.; Churáček, J. (2002) Enzymes immobilized on magnetic carriers:efficient and selective system for protein modification. J. Chromatogr. B 770, 177.
14.Bolto, B. A. (1982) Novel water treatment processes which involve polymers. In: Cooper A R, ed. Polymeric Separation Media. New York: Plenum Press, pp. 211-225.
15.Brigger, D. C.; Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 54, 631.
16.Bronshtein, A.; Aharonson, N.; Avnir, D.; Turniansky, A.; Altstein, M. (1997) Sol-gel matrixes doped with atrazine antibodies: atrazine binding properties. Chem. Mater. 9, 2632.
17.Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013.
18.Brunauer, S.; Emmett, P. H.; Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309.
19.Brus, L. E. (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403.
20.Cao, Y. W. C.; Jin, R.; Mirkin, C. A. (2002) Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536.
21.Cao, Y. W.; Banin, U. (1999) Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem., Int. Ed. 38, 3692.
22.Cao, Y. W.; Jin, R.; Mirkin, C. A. (2001) DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961.
23.Caruso, F. (2001) Nanoengineering of particle surfaces. Adv. Mater. 13, 11.
24.Chan, W. C. W.; Nie, S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016.
25.Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. (1999) The shape transition of gold nanorods. Langmuir 15, 701.
26.Correa-Duarte, M. A.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M. (1998) Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir 14, 6430.
27.Correa-Duarte, M. A.; Giersig, M.; Liz-Marzán, L. M. (1998) Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem. Phys. Lett. 286, 497.
28.Cullity, B. D. (1972) Introduction to magnetic materials. California:Addison-Wesley.
29.Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463.
30.Dai, J.; Bruening, M. L. (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films Nano.Lett. 2, 497.
31.Danek, M.; Jensen, K. F.; Bawendi, M. G. (1996) Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mater. 8, 173.
32.Davies, M. J.; Bruce, I. J.; Smethurst, D. E. (1994) Magnetic solid phase supports for affinity purification of nucleic acids. In: Pyle D L, ed. Separations for Biotechnology 3. Cambridge: The Royal Society of Chemistry, pp. 152-158.
33.Denizli, A.; Say, R. (2001) Preparation of magnetic dye affinity adsorbent and its use in the removal of aluminium ions. J. Biomater. Sci. Polymer Edn. 12, 1059.
34.Denizli, A.; Tanyolaç, D.; Salih, B.; Özdural, A. (1998) Cibacron blue F3GA-attached polyvinylbutyral microbeads as novel magnetic sorbents for removal of Cu(II), Cd(II) and Pb(II) ions. J. Chromatogr. A 793, 47.
35.Dixon, D. R. (1980) Magnetic adsorbents: Properties and applications. J. Chem. Tech. Biotechnol. 30, 572.
36.Donselaar, L. N.; Philipse, A. P. (1999) Interactions between silica colloids with magnetite cores: diffusion, sedimentation and light scattering. J. Colloid Interface Sci. 212, 14.
37.Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078.
38.Ennis, M. P.; Wisdom, G. B. (1991) A magnetizable solid phase for enzyme extraction. Appl. Biochem. Biotechnol. 30, 155.
39.Farmer, S. C.; Patten, T. E. (2001) Photoluminescent polymer/quantum dot composite nanoparticles. Chem. Mater. 13, 3920.
40.Fendler, J. H. (1987) Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87, 877.
41.Ferreira, M.; Zucolotto, V.; Ferreira, M.; Oliveira, O. N. Jr. (2004) Layer-by-layer and Langmuir-Blodgett films from nanoparticles and complexes. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.441-465.
42.Fleming, M. S.; Mandal, T. K.; Walt, D. R. (2001) Nanosphere- microsphere assembly: methods for core-shell materials preparation. Chem. Mater. 13, 2210.
43.Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. (2004) In vivo Cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969.
44.Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861.
45.Ghosh, D.; Bhattacharyya, K. G. (2002) Adsorption of methylene blue on kaolinite. Appl. Clay. Sci. 20, 295.
46.Giersig, M.; Liz-Marzán, L. M.; Ung, T.; Su, D.; Mulvaney, P. (1997) Chemistry of nanosized silica coated metal particles: EM-Study. Ber. Bunsenges. Phys. Chem. 101, 1617.
47.Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. (1997) Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv. Mater. 9, 570.
48.Gill, I.; Ballesteros, A. (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 120, 8587.
49.Gill, L. (2004) Biodoped sol-gel polymer nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 1, pp.269-292.
50.Goya, G. F.; Berquό, T. S.; Fonseca, F. C. (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520.
51.Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. (2003) Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles - A Conjugate of Quantum Dot and Magnetic Nanoparticles J. Am. Chem. Soc. 126, 5664.
52.Gupta, A. K., Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995.
53.Häfeli, U.; Schütt, W.; Teller, J.; Zborowski, M. (1997) Scientific and Clinical Applications of Magnetic Carriers. New York: Plenum Press.
54.Halavaara, J.; Tervahartiala, P.; Isonieme, H.; Hockerstedt, K. (2002) Efficacy of sequential use of supermagnetic iron oxide and gadolinium in liver MR imaging. Acta Radiologica 43, 180.
55.Hall, S. R.; Davis, S. A.; Mann, S. (2000) Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct Synthetic route to functionalized core-shell colloids. Langmuir 16, 1454.
56.Halling, P. J.; Dunnill, P. (1980) Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzyme Microb. Technol. 2, 2.
57.Han, M. Y.; Huang, W.; Chew, C. H.; Gan, L. M.; Zhang, X. J.; Ji, W. (1998) Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion. J. Phys. Chem. B 102, 1884.
58.Hao, E.; Sun, H.; Zhou, Z.; Liu, J.; Yang, B.; Shen, J. (1999) Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem. Mater. 11, 3096.
59.Haram, S. K.; Quinn, B. M.; Bard, A. J. (2001) Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123, 8860.
60.Hardikar, V. V.; Matijevic, E. (2000) Coating of nanosize silver particles with silica. J. Colloid Interface Sci. 221, 133.
61.He, X.; Lin, X.; Wang, K.; Chen, L.; Wu, P.; Yuan, Y. (2004) Biocompatiable core-shell nanoparticles for biomedicine. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 1, pp.235-253.
62.Henglein, A. (2000) Preparation and optical absorption spectra of AucorePtshell and PtcoreAushell colloidal nanoparticles in aqueous solution. J. Phys. Chem. B 104, 2201.
63.Henglein, A.; Holzwarth, A.; Mulvaney, P. (1992) Fermi level equilibration between colloidal lead and silver particles in aqueous solution. J. Phys. Chem. 96, 8700.
64.Henglein, A.; Mulvaney, P.; Holzwarth, A. (1992) Surface chemistry of colloidal silver: reduction of adsorbed cadmium(2+) ions and accompanying optical effects. J. Phys. Chem. 96, 2411.
65.Henglein, A.; Mulvaney, P.; Holzwarth, A.; Sosebee, T. E.; Fojtik, A. (1992) Electrochemistry of colloidal silver particles in aqueous solution: deposition of lead and indium and accompanying optical effects. Ber. Bunsenges. Phys. Chem. 96, 754.
66.Hickey, S. G.; Riley, D. J.; Tull, E. J. (2000) Photoelectrochemical studies of CdS nanoparticle modified electrodes: Absorption and photocurrent investigations. J. Phys. Chem. B 104, 7623.
67.Hilger, I.; Fruhauf, K.; Andra, W.; Hiergeist, R.; Hergt, R.; Kaiser, W. A. (2002) Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad. Radiol. 9, 198.
68.Hirschbein, B. L.; Brown, D. W.; Whitesides, G. M. (1982) Magnetic separations in chemistry and biochemistry. Chemtech 12, 172.
69.Hoener, C, F.; Allan, K. A.; Bard, A. J.; Campion, A.; Fox, A. M.; Mallouk. T. E.; Webber, S. E.; White, J. M. (1992) Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812.
70.Hong, X.; Li, J.; Wang, M.; Xu, J.; Guo, W.; Li, J.; Bai, Y.; Li, T. (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem. Mater. 16, 4022.
71.Hsu, K. H.; Wu, J. H.; Huang, Y. Y.; Wang, L. Y.; Lee, H. Y.; Lin, J. G. (2005) Critical size effects on the magnetic resonance on Fe3O4 nanoparticles. J. Appl. Phys. 97, 114322
72.Hu, K.; Brust, M.; Bard, A. J. (1998) Characterization and surface charge measurement of self-assembled CdS nanoparticle films. Chem. Mater. 10, 1160.
73.Husseman, M.; Malmström, E. E.; McNamara, M.; Mate, M.; Mecerreyes, D.; Benoit, D. G.; Hedrick, J. L.; Mansky, P.; Huang, E.; Russell, T. P.; Hawker, C. J. (1999) Controlled synthesis of polymer brushes by "living" free radical polymerization techniques. Macromolecules 32, 1424.
74.Ishizuki, N.; Torigoe, N.; Esumi, K.; Meguro, K. (1991) Characterization of precious metal particles prepared using chitosan as a protective agent. Colloids and Surfaces 55, 15.
75.Ji, Q.; Lloyd, C. R.; Ellis, W. R.; Jr., Eyring, E. M. (1998) Sol-gel-encapsulated Heme proteins evidence for CO2 adducts. J. Am. Chem. Soc. 120, 221.
76.Jordan, A.; Wust, P.; Scholz, R.; Tesche, B.; Fahling, H.; Mitrovics, T.; Vogl, T.; Cervos-Navarro, J.; Felix, R. (1996) Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia 12, 705.
77.Kadnikova, E. N.; Kostic, N. M. (2002) Oxidation of ABTS by hydrogen peroxide catalyzed by horseradish peroxidase encapsulated into sol–gel glass: Effects of glass matrix on reactivity. J. Mol. Catal. B 18, 39.
78.Katsikas, L.; Gutiérrez, M.; Henglein, A. (1996) Bimetallic colloids: silver and mercury. J. Phys. Chem. 100, 11203.
79.Khan, S. A.; Rehman, R.; Khan, M. A. (1995) Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Manage. 15, 271.
80.Khng, H. P.; Cunliffe, D.; Davies, S.; Turner, N. A.; Vulfson, E. N. (1998) The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins. Biotechnol. Bioeng. 60, 419.
81.Kickelbick, G.; Liz-Marzán, L. M. (2004) Core-shell nanoaprticles. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 2, pp.199-220.
82.Kitahara, A.; Kazuhiko, K.; Kijiro, K. (1988) Formation of ionic water oil microemulsions and their application in the preparation of CaCO3 particles. J. Colloid Interface Sci. 122, 78.
83.Kobayashi, H.; Matsunaga, T. (1991) Amino-silane modified superparamagnetic particles with surface-immobilized enzyme. J. Colloid Interface Sci. 141, 505.
84.Kondo, A.; Fukuda, H. (1997) Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J. Ferment. Bioeng. 84, 337.
85.Koneracká, M.; Kopčanský, P.; Antalík, M.; Timko, M.; Ramchand, C. N.; Lobo, D.; Mehta, R. V.; Upadhyay, R. V. (1999) Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater. 201, 427.
86.Krogh, T. N.; Berg, T.; Højrup, P. (1999) Protein analysis using enzymes immobilized to paramagnetic beads. Anal. Biochem. 274, 153.
87.Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361.
88.Lee, C. K.; Low, K. S.; Chung, L. C. (1997) Removal of some organics dyes by hexane-extracted spent bleaching earth. J. Chem. Tech. Biotechnol. 69, 93.
89.Lee, H. S.; Lee, W. C. (1999) A comparison of coprecipitation with microemulsion methods in the preparation of magnetite. J. Appl. Phys. 85, 5231.
90.Lee, J.; Isobe, T.; Senna, M. (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 177, 490.
91.Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talhman, D. R.; Adair, J. H. (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique. Langmuir 15, 4328.
92.Li, X.; Lu, G.; Li, S. (1996) Synthesis and properties of strontium ferrite ultrafine powders. J. Mater. Sci. Lett. 15, 397.
93.Liao, M. H.; Chen, D. H. (2002) Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent. Biotechnol. Lett. 24, 1913.
94.Liao, M. H.; Chen, D. H. (2002) Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem. 12, 3654.
95.Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem. Mater. 10, 3936.
96.Liu, Z.; Liu, B.; Kong, J.; Deng, J. (2000) Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor. Anal. Chem. 72, 4707.
97.Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Homogeneous silica coating of vitreophobic colloids. Chem. Commun. 731.
98.Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329.
99.Liz-Marzán, L. M.; Mulvaney, P. (1998) Au@SiO2 colloids: effect of temperature on the surface plasmon absorption. New J. Chem. 1285.
100.Liz-Marzán, L. M.; Philipse, A. P. (1995) Synthesis and optical properties of gold-labeled silica particles. J. Colloid Interface Sci. 176, 459.
101.Löster, K.; Seidel, S.; Kirstein, D.; Schneider, F.; Noll, F. (1992) Novel antibody coating of a magnetizable solid phase for use in enzyme immunoassays. J. Immunol. Methods 148, 41.
102.Lu, L.; Wang, H.; Zhou, Y.; Xi, S.; Zhang, H.; Hu, J.; Zhao, B. (2002) Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. Chem. Commun. 144.
103.Lübbe, A. S.; Alexiou, C.; Bergemann, C. (2001) Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200.
104.Luna-Xavier, J. L.; Bourgeat-Lami, E.; Guyot, A. (2001) The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization. Colloid Polym. Sci. 279, 947.
105.Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T. (1997) Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13, 6195.
106.Mak, S. Y.; Chen, D. H. (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes and Pigments. 61, 93.
107.Mak, S. Y.; Chen, D. H. (2005) Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: a novel, magnetic, strong acid cation nano-adsorbent. Macromol. Rapid. Commun. 26, 1567.
108.Mak, S. Y.; Chen, D. H. (2006) Fabrication of magnetic luminescent nanocomposites via adsorption-precipitation of metal ions on sulfonated iron oxide nanoparticles. Chem. Lett. 10, XXX. (in press)
109.Malik, M. A.; O’Brien, P.; Revaprasadu, N. (2002) A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem. Mater. 14, 2004.
110.Mamedov, A. A.; Kotov, N. A. (2000) Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16, 5530.
111.McCaughey, B.; Hampsey, J. E.; Wang, D.; Lu, Y. (2004) Self-assembled organic/inorganic nanocomposites. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 9, pp.529-559.
112.Meyer, M.; Wallberg, C.; Kurihara, K.; Fendler, J. H. (1984) J. Chem. Soc. Chem. Commun. 90.
113.Miyabayashi, A.; O’Shannessy, D. (1989) Operational characteristics of a new enzyme electrode based on electromagnetic entrapment of the biocatalyst bound to magnetic particles. Biotechnol. Appl. Biochem. 11, 379.
114.Mori, H.; Seng, D. C.; Zhang, M.; Müller, A. H. E. (2002) Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces. Langmuir 18, 3682.
115.Moroz, P.; Jones, S. K.; Gray, B. N. (2002) Magnetically metiated hyperthermia: current status and future directions. Int. J. Hyperthermia 18, 267.
116.Niemeyer, C. M. (2001) Nanoparticles, protein, and nucleic acid:biotechnology meets materials science. Angew. Chem. Int. Ed. 40: 4128-4158.
117.Nishimura, K.; Hasegawa, M.; Ogura, Y.; Nishi, T.; Kataoka, K.; Handa, H. (2002) 4℃ preparation of ferrite nanoparticles having protein molecules immobilized on their surface. J. Appl. Phys. 91, 8555.
118.Nooney, R. I.; Dhanasekaran, T.; Chen, Y.; Josephs, R.; Ostafin, A. E. (2002) Self-assembled highly ordered spherical mesoporous silica/gold nanocomposites. Adv. Mater. 14, 529.
119.O’Brien, S. M.; Thomas, O. R. T.; Dunnill, P. (1996) Non-porous magnetic chelator supports for protein recovery by immobilized metal affinity adsorption. J. Biotechnol. 50, 13.
120.Obare, S. O.; Jana, N. R.; Murphy, C. J. (2001) Preparation of polystyrene-and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano. Lett. 1, 601.
121.Obert, R.; Dave, B. C. (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J. Am. Chem. Soc. 121, 12192.
122.Ohmori, M.; Matijevic, E. (1992) Preparation and properties of uniform coated colloidal particles: VII. silica on hematite. J. Colloid Interface Sci. 150, 594.
123.Ohmori, M.; Matijevic, E. (1993) Preparation and properties of uniform coated inorganic colloidal particles: 8. silica on iron. J. Colloid Interface Sci. 160, 288.
124.Oldfield, G.; Ung, T.; Mulvaney, P. (2000) Au@SnO2 core-shell nanocapacitors. Adv. Mater. 12, 1519.
125.Osseo-Asare, K.; Arriagada, F. J. (1990) Nanosize silica via controlled hydrolysis in reverse micellar systems. Ceram. Trans. 12, 3.
126.Osseo-Asare, K.; Arriagada, F. J. (1990) Preparation of SiO2 nanoparticles in a nonionic reverse micellar system. Colloids and surfaces 50, 321.
127.Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater. 14, 2113.
128.Park, S. J.; Taton, T. A.; Mirkin, C. A. (2002) Array-based electrical detection of DNA with nanoparticle Probes. Science 295, 1503.
129.Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M. (2000) One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16, 2731.
130.Pastoriza-Santos, I.; Liz-Marzán, L. M. (1999) Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15, 948.
131.Pelecky, D. L.; Rieke, R. D. (1996) Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770.
132.Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019.
133.Percy, M. J.; Armes, S. P. (2002) Surfactant-free synthesis of colloidal poly(methyl methacrylate)/silica nanocomposites in the absence of auxiliary comonomers. Langmuir 18, 4562.
134.Philipse, A. P.; van Bruggen, M. P.; Pathmamanoharan, C. (1994) Magnetic silica dispersions: preparation and stability of surface- modified silica particles with a magnetic core. Langmuir 10, 92.
135.Pieter, B. R.; Williams, R. A.; Webb, C. (1992) Magnetic carrier technology. In:Williams, R. A., ed. Colloid and Surface Engineering: Applications in the process industries. Oxford:Butterworth- Heinemann, pp.248-286.
136.Prucker, O.; Rühe, J. (1998) Mechanism of radical chain polymerizations initiated by azo compounds covalently bound to the surface of spherical particles. Macromolecules 31, 602.
137.Reetz, M. T. (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. 9, 943.
138.Reetz, M. T.; Winter, M.; Tesche, B. (1997) Regioselective palladium-catalyzed coupling reactions of vinyl chlorides with carbon nucleophiles. Chem. Commun. 535.
139.Reetz, M. T.; Zonta, A.; Simpelkamp, J.; Könen, W. (1996) In situ fixation of lipase-containing hydrophobic sol–gel materials on sintered glass—highly efficient heterogeneous biocatalysts. Chem. Commun. 1397.
140.Revaprasadu, N.; Malik, M. A.; O’Brien, P. ; Wakefield, G. (1999) A simple route to synthesise nanodimensional CdSe-CdS core-shell structures from single molecule precursors. Chem. Commun. 1573.
141.Richardson, J.; Hawkins, P.; Luxton, R. (2001) The use of coated paramagnetic particles as a physical label in a magneto-immunoassy. Biosens. Bioelectron. 16, 989.
142.Rivas, L.; Sánchez-Cortes, S.; García-Ramos, J. V. ; Morcillo, G. (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced raman activity. Langmuir 16, 9722.
143.Rogach, A. L.; Kotov, N. A.; Koktysh, D. S.; Susha, A. S.; Caruso, F. (2002) II–VI semiconductor nanocrystals in thin films and colloidal crystals. Colloid Surf. Sci. A 202, 135.
144.Rogach, A. L.; Nagesha, D. K.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. (2000) Raisin bun-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater. 12, 2676.
145.Rudge, S. R.; Kurtz, T. L.; Vessely, C. R.; Catterall, L. G.; Williamson, D. L. (2000) Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21, 1411.
146.Šafařík, I. (1995) Removal of organic polycyclic compounds from water solutions with a magnetic chitosan based sorbent bearing copper phthalocyanine dye. Wat. Res. 29, 101.
147.Šafařík, I.; Nymburská, K.; Šafaříková, M. (1997) Adsorption of water-soluble organic dyes on magnetic charcoal. J. Chem. Tech. Biotechnol. 69, 1.
148.Šafařík, I.; Šafaříková, M. (1999) Use of magnetic techniques for the isolation of cells. J. Chromatogr. B 722, 33.
149.Sampath, S.; Lev, O. (1997) 3D organized self-assembled monolayer electrodes: A novel biosensor configuration. Adv. Mater. 9, 410.
150.Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. (1997) A novel method of preparing thiol-derivatized nanoparticles of gold, platinum and silver forming superstructures. Chem. Commun. 537.
151.Sauzedde, F.; Elaissari, A.; Pichot, C. (2000) Thermosensitive magnetic particles as solid phase support in an immunoassay. Macromol. Symp. 151, 617.
152.Schierhorn, M.; Liz-Marzán, L. M. (2002) Synthesis of bimetallic colloids with tailored intermetallic separation. Nano. Lett. 2, 13.
153.Schmid, G. (2001) Metals. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, pp.15-59.
154.Schmidt, A. M. (2005) The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of ε-caprolactone. Macromol. Rapid. Commun. 26, 93.
155.Schütt, W.; Grüttner, C.; Häfeli, U.; Zborowski, M.; Teller, J.; Putzar, H.; Schümichen, C. (1997) Applications of magnetic targeting in diagnosis and therapy – possibilities and limitations: a mini-review. Hybridoma 16, 109.
156.Shabat, D.; Grynszpan, F.; Saphier, S.; Turniansky, A.; Avnir, D.; Keinan, E. (1997) An efficient sol-gel reactor for antibody-catalyzed transformations. Chem. Mater. 9, 2258.
157.Smalley, R. (1999) Congressional Hearings, summer.
158.Sonti, S. V.; Bose, A. (1995) Cell separation using protein: a coated magnetic nanoclusters. J. Colloids Interface Sci. 170, 575.
159.Sorensen, C. M. (2001) Magnetism. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley Interscience, pp.169-222.
160.Staff, H.; Coughlin, E. B.; Emrick, T. (2002) Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. J. Am. Chem. Soc. 124, 5729.
161.Steigerwald, M. L.; Brus, L. E. (1990) Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 23, 183.
162.Sugimoto, T. (1987) Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 28, 65.
163.Susha, A. S.; Caruso, F.; Rogach, A. L.; Sukhorukov, G. B.; Kornowski, A.; Möhwald, H.; Giersig, M.; Eychmüller, A.; Weller, H. (2000) Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Colloid Surf. Sci. A 163, 39.
164.Tartaj, P. (2004) Nanomagnets for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.823-842.
165.Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289, 1757.
166.Taylor, J. I.; Hurst, C. D.; Davies, M. J.; Sachsinger, N.; Bruce, I. J. (2000) Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A 890, 159.
167.Teranishi, T.; Nakata, K.; Miyake, M.; Toshima, N. (1996) Promotion effect of polymer-immobilized neodymiumions on catalytic activity of ultrafine palladium particles. Chem. Lett. 4, 277.
168.Thies-Weesie, D. M.; Philipse, A. P. (1995) Light-induced convection in sedimenting silica-hematite dispersions. Langmuir 11, 4180.
169.Tian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. (1996) Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J. Phys. Chem. 100, 8927.
170.Toshima, N.; Yonezawa, T. (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New. J. Chem. 1179-1201.。
171.Van-Beers, B. E.; Pringot, J.; Gallez, B. (1995) Iron oxides as contrast agents for MRI of the liver. J. Radiol. 76, 991.
172.Varlan, A. R.; Suls, J.; Jacobs, P.; Sansen, W. (1995) A new technique of enzyme entrapment for planar biosensors. Biosens. Bioelectron. 10, 15.
173.Wang, B.; Li, B.; Deng, Q.; Dong, S. (1998) Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material. Anal. Chem. 70, 3170.
174.Wang, B.; Li, B.; Wang, Z.; Xu, G.; Wang, Q.; Dong, S. (1999) Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium. Anal. Chem. 71, 1935.
175.Wang, J.; Pamidi, P. V. A. (1997) Sol-gel-derived gold composite electrodes. Anal. Chem. 69, 4490.
176.Wang, J.; Xu, D.; Polsky, R. (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc. 124, 4208.
177.Wang, Y.; Teng, X. W.; Wang, J. S.; Yang, H. (2003) Solvent-Free Atom Transfer Radical Polymerization in the Synthesis of Fe2O3@Polystyrene Core-Shell Nanoparticles Nano. Lett. 3, 789.
178.Warson, K. J.; Zhu, J.; Nguyen, S. T.; Mirkin, C. A. (1999) Hybrid nanoparticles with block copolymer shell structures. J. Am. Chem. Soc. 121, 462.
179.Watanabe, S.; Regen, S. L. (1994) Dendrimers as building blocks for multilayer construction J. Am. Chem. Soc. 116, 8855.
180.Werne, T. V.; Patten, T. E. (1999) Preparation of structurally well- defined polymer-nanoparticle hybrids with controlled/living radical polymerizations. J. Am. Chem. Soc. 121, 7409.
181.Williams, A. K.; Hupp, J. T. (1998) Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes. J. Am. Chem. Soc. 120, 4366.
182.Wu, S.; Ellerby, L. M.; Cohan, J. S.; Dunn, B.; El-Sayed, M. A.; Valentine, J. S.; Zink, J. I. (1993) Bacteriorhodopsin encapsulated in transparent sol-gel glass: a new biomaterial. Chem. Mater. 5, 115.
183.Xu, Z.; Liu, Q.; Finch, J. A. (1999) Engineering of nanosize superparamagnetic particles for use in magnetic carrier technology. In: Schwarz J A, Contescu C I, eds. Surfaces of Nanoparticles and Porous Materials. New York: Marcel Dekker, pp. 31-50.
184.Yamanaka, S. A.; Dunn, B.; Valentine, J. S.; Zink, J. I. (1995) Nicotinamide adenine dinucleotide phosphate fluorescence and absorption monitoring of enzymic activity in silicate sol-gels for chemical sensing applications. J. Am. Chem. Soc. 117, 9095.
185.Yang, M.; Li, H. L. (2001) Determinationn of trace hydrazine by differential pulse voltammetry using magnetic microspheres. Talanta 55, 479.
186.Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano. Lett. 2, 427.
187.Yonezawa, T.; Tominaga, T.; Richard, D. (1996) Stabilizing structure of tertiary amine-protechted rhodium colloid dispersions in chloroform. J. Chem. Soc. Dalton Trans. 783.
188.Zezza, F.; Comparelli, R.; Striccoli, M.; Curri, M. L.; Tommasi, R.; Agostiano, A.; Monica, M. D. (2003) High quality CdS nanocrystals: surface effects. Synthetic Metals. 139, 597.
189.Zhang, Z.; Zhao, B.; Hu, L. (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical-reduction processes. J. Solid State Chem. 121, 105.
190.Zhong, X. H.; Xie, R. G.; Zhang, Y.; Basche, T.; Knoll, W. (2005) High-quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chem. Mater. 17, 4038.
191.Zhou, Q.; Wang, S.; Fan, X.; Advincula, R.; Mays, J. (2002) Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles. Langmuir 18, 3324.
192.工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經濟部技術處。
193.尹邦耀 (2002) 奈米時代,臺北:五南。
194.史宗淮 (1995) 微粉製程技術簡介,化工 42,28。
195.朱屯,王福明,王習東 (2003) 奈米材料技術,臺北:五南。
196.吳思翰 (2004) 金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程研究所博士論文。
197.吳國卿,董玉蘭 (1999) 奈米粒子材料的觸媒性質,化工資訊 5月:42.
198.馬振基 (2004) 奈米材料科技 — 原理與應用,臺北:全華。
199.馬遠榮 (2002) 奈米科技,臺北:商周。
200.張正武 (2004) FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文。
201.張立德,牟季美 (2002) 奈米材料和奈米結構,臺中:滄海。
202.張揚狀 (2005) 表面被覆幾丁聚糖之多功能磁性奈米載體的製備與應用,國立成功大學化學工程研究所博士論文。
203.張煦、李學養 譯 (1982) 磁性物理學,臺北:聯經。
204.莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
205.郭正次,朝春光 (2004) 奈米結構材料科學,臺北:全華。
206.廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文。
207.蘇品書 (1989) 超微粒子材料技術,臺南:復漢。
208.龔吉合 (1998) 材料科學導論,臺中:滄海。