簡易檢索 / 詳目顯示

研究生: 沈臨風
Samuel, Alinford
論文名稱: 用於偏遠島嶼的主動式雙斜面太陽能蒸餾器原型的統計和實驗分析
Statistical and Experimental Analysis of a Prototype Active Double-Sloped Solar Still for Application on Remote Islands
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 167
中文關鍵詞: 太陽能蒸餾器太陽能迴歸分析太陽能熱應用水資源短缺
外文關鍵詞: Solar still, Solar energy, Regression analysis, Solar thermal application, Water scarcity
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Water is one of the most abundant resources on earth, yet some places suffer from
    economic or physical water scarcity. Some of the most impacted locations are remote islands despite being surrounded by the vast ocean. Due to their size, topography and remoteness access to freshwater poses a problem. The issue is also compounded by relatively low economic activity and development which hinders the use of sophisticated desalination plants in most of these locations. Additionally, the technical skills and financing required for regular maintenance is often insufficient. To this end, the present study aims to design and investigate the performance a cheap, simple, durable and low maintenance solar desalination unit, a solar still, that is applicable to such remote islands.

    Research was conducted to determine a simple, durable, affordable yet effective design for a solar still that can be used on remote islands. A solar still with basin dimensions of 1.75×0.59×0.12 m and double-sloped glass covers inclined at 15° to the horizontal was designed and fabricated based on the aforementioned criteria as well as to the ability to produce potable water from untreated seawater and to satisfy the minimum water requirement as recommended by World Health Organization. A total of 145 strands of cotton wicks, 12 rectangular and 12 compound shaped fins and a solar water heater consisting of 12 evacuated tubes with heat pipes were coupled to the base design in stages to increase its productivity. Experimental, statistical, and economic analyses were carried out to ascertain its effectiveness. A chemical analysis performed on the distillate produced revealed that high quality potable water can be obtained using the solar still because of its high salt rejection of 80-99%. Average daily productivity ranging from 1.8 – 4.4 liters per day were observed at a recovery rate of 70%. This is representative of increased productivity of 3%, 94% and 146% due to the addition of wicks and fins only, solar water heater only and combined wicks, fins and solar water heater respectively. Additionally, on an annual basis a single unit was able to satisfy 200 – 235% of WHO minimum water requirement at the level of 2 liters per day per person and 50 – 60 % of the requirement at the level of 7.5 liters per day per person.

    The volume of distillate produced was found to be correlated to the amount of global solar radiation received, the ambient temperature and the extent of cloud cover based on a statistical analysis. A multi-variable regression model was developed with R-squared and adjusted R-squared values of 99.47% and 99.44% respectively. Using typical monthly meteorological (TMM) data, average daily yield from the active solar still of 4.16 liters per day and 3.98 liters per day were predicted for Tainan City and Dongji Islet respectively. In addition, the cost of the potable water produced using the solar still was found to be 79% and 110% cheaper compared to the price of bottled water in Tainan City and in Penghu county respectively.

    The simple and cost effective nature of the prototype solar still and the absence of electrical power and sophisticated devices for operation makes the prototype solar still suitable for application on remote islands.

    ACKNOWLEDGEMENT i ABSTRACT ii TABLE OF CONTENTS iii LIST OF FIGURES vii LIST OF TABLES x LIST OF ABBREVIATIONS xii 1 INTRODUCTION 1 1.1 Water Availability 1 1.2 Water Requirement 4 1.3 Situation in Penghu County (remote area) 6 1.4 Situation on Other Remote Islands 9 1.5 Water Purification and Desalination Technologies 11 1.6 Solar Desalination 15 1.7 Objectives 19 2 LITERATURE REVIEW 21 2.1 Operation of a Simple Solar Still 21 2.2 Heat Transfer Processes, Productivity and Efficiency 23 2.3 Thermal Parameters 28 2.3.1 Energy for Heating of Feedwater 28 2.3.2 Heat of Vaporization 28 2.3.3 Heat of Condensation 29 2.4 Factors that Affect the Productivity of a Simple Solar Still 29 2.4.1 Meteorological and Environmental Factors 30 2.4.2 Design Parameters 34 2.4.3 Operational Techniques 48 2.5 Types of Solar Stills 51 2.6 Statistical Modelling of Solar Stills 52 3 METHODOLOGY 56 3.1 Solar Still Design and Fabrication 56 3.1.1 Approach to Designing the Solar Still 56 3.1.2 Design Considerations 56 3.1.3 Fabrication and Testing 58 3.2 Experimentation 59 3.2.1 Site Description 59 3.2.2 System Description 60 3.2.3 Experimental Procedure 68 3.3 Data Analysis 71 4 RESULTS AND DISCUSSION 73 4.1 Water Quality 73 4.2 Effect of Design Parameters 76 4.2.1 Effect of Fins, Wicks and Solar Water Heater on Productivity 76 4.2.2 Effect of Fins and Solar Water Heater on Basin Water Temperature 84 4.2.3 Thermal Efficiency 88 4.2.4 Effect of Different Recovery Ratios 89 4.3 Effect of Weather Parameters 95 4.3.1 Effect of Insolation 95 4.3.2 Effect of Ambient Temperature 97 4.3.3 Effect of Relative Humidity 97 4.3.4 Effect of Windspeed 99 4.3.5 Effect of Cloud Cover 100 4.4 Statistical Modelling of Daily Distillate Yield 101 4.4.1 Preliminary Detection of Outliers 101 4.4.2 Predictor Variables Selection 105 4.4.3 Model Building 105 4.4.4 Statistical Evaluation of the Model 111 4.4.5 Model Validation 111 4.4.6 Predicting the Yield at 70% Recovery Ratio Based on the Weather Conditions of the 60% and 80% Recoveries 113 4.4.7 Estimation of Annual Distillate Yield and Sea Salt for Tainan City and Dongji Islet 115 4.4.8 Scaling of Prototype Based on Local Weather Condition 117 4.5 Techno-Economic Analysis 118 5 CONCLUSIONS AND RECOMMENDATIONS 124 5.1 Conclusions 124 5.2 Recommendations 126 REFERENCES 127 APPENDICES 153 Appendix A: Dimensions of the solar still’s cover, basin, leg support and fins using Google Sketchup 153 Appendix B: Fabrication of solar still 155 Appendix C: Addition of insulation material to the basin of the solar still 156 Appendix D: Ancillary components 157 Appendix E: Sample calculation for Tables 4-2 and 4-3 158 Appendix F: Sample calculation of latent heat of vaporization, efficiency and energy for evaporation 160 Appendix G: Sample calculation of statistical measures for Table 4-14 161 Appendix H: Unmodified solar still data and sample calculation of daily productivity and daytime and nighttime contribution to daily yield 163 Appendix I: Sample trend line calculation for productivity of Figure 4-10 164 Appendix J: Data set from Trial 9 used for validation of the MLR model 167

    [1] Water Science School. (2019, October 25). The distribution of water on, in, and above the Earth | U.S. Geological Survey. https://www.usgs.gov/media/images/distribution-water-and-above-earth

    [2] Shiklomanov, I. A. (1991). The world’s water resources (Vol. 25). https://snia.mop.gob.cl/sad/PHI710.pdf

    [3] Velmurugan, A., Swarnam, P., Subramani, T., Meena, B., & Kaledhonkar, M. J. (2020). Water Demand and Salinity. In Desalination - Challenges and Opportunities. IntechOpen. https://doi.org/10.5772/intechopen.88095

    [4] How Much Water is There on Earth? | U.S. Geological Survey. (n.d.). Retrieved April 1, 2022, from https://www.usgs.gov/special-topics/water-science-school/science/how-much-water-there-earth#overview

    [5] Boretti, A., & Rosa, L. (2019). Reassessing the projections of the World Water Development Report. Npj Clean Water, 2(1), 15. https://doi.org/10.1038/s41545-019-0039-9

    [6] Ezbakhe, F., Giné-Garriga, R., & Pérez-Foguet, A. (2019). Leaving no one behind: Evaluating access to water, sanitation and hygiene for vulnerable and marginalized groups. Science of the Total Environment, 683, 537–546. https://doi.org/10.1016/J.SCITOTENV.2019.05.207

    [7] The United Nations World Water Development Report 2020. (2020). UN. https://doi.org/10.18356/e2014dcb-en

    [8] Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2). https://doi.org/10.1126/sciadv.1500323

    [9] Water Scarcity: Our essential guide to humanity’s mega challenge | Aquatech. (n.d.). Retrieved May 5, 2022, from https://www.aquatechtrade.com/news/water-treatment/essential-guide-water-scarcity/

    [10] Mallick, B., & Fernanda Roldan-Rojas, L. (2015). Social Stratification in the Drinking Water Scarcity Context: Empirical Evidence of Coastal Bangladesh. American Journal of Water Resources, 3(3), 92–99. https://doi.org/10.12691/ajwr-3-3-4

    [11] Omrani, A. (2013). The Management of Water in Iran (Issue June). Hogeschool-Universiteit Brussel.

    [12] Molle, F. (2010). Water demand management : potential and pitfalls. https://www.researchgate.net/publication/280637932_Water_demand_management_potential_and_pitfalls

    [13] Internal renewable freshwater resources by region, 2015. (n.d.). Our World in Data. Retrieved April 5, 2022, from https://ourworldindata.org/grapher/internal-renewable-freshwater-resources-by-region

    [14] Collins, R. (n.d.). The Survival Rule of 3 | Air, Shelter, Water, & Food - TruePrepper. Retrieved June 5, 2022, from https://www.trueprepper.com/survival-rule-of-3/

    [15] Chapter 11 Nutrition. (n.d.). SlideShare. Retrieved May 3, 2022, from https://slideplayer.com/slide/12715002/

    [16] Sawka, M. N., Cheuvront, S. N., & Carter, R. (2005). Human Water Needs. Nutrition Reviews, 63, S30–S39. https://doi.org/10.1111/j.1753-4887.2005.tb00152.x

    [17] Water Science School. (2019, May 22). The Water in You: Water and the Human Body | U.S. Geological Survey. https://www.usgs.gov/special-topics/water-science-school/science/water-you-water-and-human-body

    [18] World Health Organization. (2004). Guidelines for drinking-water quality. World Health Organization.

    [19] World Health Organization (WHO). (2011). Guidelines for drinking-water quality - 4th ed.

    [20] WHO Regional Office for South-East Asia. (n.d.). Minimum water quantity needed for domestic uses. Retrieved June 5, 2022, from https://ec.europa.eu/echo/files/evaluation/watsan2005/annex_files/WHO/WHO5%20-%20Minimum%20water%20quantity%20needed%20for%20domestic%20use.pdf

    [21] Wibowo, A. I., & Chang, K.-C. (2020). Solar energy-based water treatment system applicable to the remote areas: Case of Indonesia. Journal of Water, Sanitation and Hygiene for Development, 10(2), 347–356. https://doi.org/10.2166/washdev.2020.003

    [22] Gleick, P. H. (1996). Basic Water Requirements for Human Activities: Meeting Basic Needs. Water International, 21(2), 83–92. https://doi.org/10.1080/02508069608686494

    [23] Howard, G., & Bartram, J. (2003). Domestic water quantity, service level and health. In World Health Organization. World Health Organization. https://apps.who.int/iris/handle/10665/67884

    [24] Liu, J., Mei, C., Wang, H., Shao, W., & Xiang, C. (2018). Powering an island system by renewable energy—A feasibility analysis in the Maldives. Applied Energy, 227, 18–27. https://doi.org/10.1016/j.apenergy.2017.10.019

    [25] Huang, C.-Y., Yu, T.-T., Lin, W.-M., Chung, K.-M., & Chang, K.-C. (2022). Energy Sustainability on an Offshore Island: A Case Study in Taiwan. Energies, 15(6), 1–15. https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:6:p:2258-:d:775006

    [26] Tsai, H.-M. (2009). Co-evolution and Beyond: Landscape Changes in the Penghu Archipelago (the Pescadores). Asia-Pacific Forum, 44, 193–213.

    [27] Penghu County Government. (n.d.). Population. Retrieved June 5, 2022, from https://www.penghu.gov.tw/en/home.jsp?id=9

    [28] Penghu County Government. (n.d.). Rainfall. Retrieved June 5, 2022, from https://www.penghu.gov.tw/en/home.jsp?id=19

    [29] Chen, J., Lu, H. S., & Awerbuch, L. (1994). Seawater desalination to augment the water supply on Penghu Island, Taiwan. Desalination, 97(1–3), 319–325. https://doi.org/10.1016/0011-9164(94)00096-4

    [30] Chung, O. (2009, February 1). Searching for Water. Taiwan Today. https://taiwantoday.tw/news.php?unit=14&post=23837

    [31] Burns, W. (2002). Pacific Island Developing Country Water Resources and Climate Change. The World’s Water 2002-2003: The Biennial Report on Freshwater Resources.

    [32] Mirti, A., & Davies, S. (2005). Drinking Water Quality in the Pacific Island Countries : Situation Analysis and Needs Assessment. 1–11. http://www.pacificwater.org/userfiles/file/jc0181.pdf

    [33] Pucino, N. (2016). Freshwater Management in Pacific Island Countries and Climate Change. https://doi.org/10.13140/RG.2.1.3561.5124.

    [34] Mcleod, E., Bruton-Adams, M., Förster, J., Franco, C., Gaines, G., Gorong, B., James, R., Posing-Kulwaum, G., Tara, M., & Terk, E. (2019). Lessons from the Pacific Islands – Adapting to climate change by supporting social and ecological resilience. Frontiers in Marine Science , 6, 289.

    [35] Deveraux, T., & Freshwater, A. (n.d.). Desalination in Pacific Island Countries - A Preliminary Overview. SOPAC Water and Sanitation Programme. Retrieved July 9, 2022, from https://gsd.spc.int/sopac/docs/SOPAC%20Technical%20Report%20437%20Desalination%20for%20Pacific%20Island%20Countries.pdf

    [36] Alkaisi, A., Mossad, R., & Sharifian-Barforoush, A. (2017). A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia, 110, 268–274. https://doi.org/10.1016/j.egypro.2017.03.138

    [37] Hasnain, S. M., & Alajlan, S. (1998). Coupling of PV-powered R.O. brackish water desalination plant with solar stills. Renewable Energy, 14(1–4), 281–286. https://doi.org/10.1016/S0960-1481(98)00078-0

    [38] Madani, A. A., & Zaki, G. M. (1995). Yield of solar stills with porous basins. Applied Energy, 52(2–3), 273–281. https://doi.org/10.1016/0306-2619(95)00044-S

    [39] Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., & Davies, P. A. (2016). Solar stills: A comprehensive review of designs, performance and material advances. Renewable and Sustainable Energy Reviews, 63, 464–496. https://doi.org/10.1016/j.rser.2016.05.068

    [40] Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276(1–3), 1–12. https://doi.org/10.1016/j.desal.2011.03.042

    [41] Popescu, R. C., Fufă, M. O. M., Grumezescu, A. M., & Holban, A. M. (2017). Nanostructurated membranes for the microbiological purification of drinking water. In Water Purification (pp. 421–446). Elsevier. https://doi.org/10.1016/B978-0-12-804300-4.00012-5

    [42] Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2009). Science and technology for water purification in the coming decades. In Nanoscience and Technology (pp. 337–346). Co-Published with Macmillan Publishers Ltd, UK. https://doi.org/10.1142/9789814287005_0035

    [43] Tanabe, R. (2020, June 8). Water purification. https://www.newworldencyclopedia.org/entry/Water_purification

    [44] Popescu, R. C., Fufă, M. O. M., Grumezescu, A. M., & Holban, A. M. (2017). Nanostructurated membranes for the microbiological purification of drinking water. In Water Purification (pp. 421–446). Elsevier. https://doi.org/10.1016/B978-0-12-804300-4.00012-5

    [45] Nikinmaa, M. (2014). Principles of Water Purification. In An Introduction to Aquatic Toxicology (pp. 41–46). Elsevier. https://doi.org/10.1016/B978-0-12-411574-3.00003-7

    [46] Anand, B., Shankar, R., Murugavelh, S., Rivera, W., Midhun Prasad, K., & Nagarajan, R. (2021). A review on solar photovoltaic thermal integrated desalination technologies. Renewable and Sustainable Energy Reviews, 141, 110787. https://doi.org/10.1016/j.rser.2021.110787

    [47] Centers for Disease Control and Prevention, & National Center for Emerging and Zoonotic Infectious Diseases. (n.d.). Water Treatment . Retrieved June 8, 2022, from https://www.cdc.gov/healthywater/drinking/public/water_treatment.html

    [48] Water purification methods comparison. (n.d.). Retrieved May 8, 2022, from http://naturescycle.co.za/water-wisdom/comparison-of-distillation-to-other-purification-methods/

    [49] Miller, G. T., & Spoolman, S. (2015). Environmental Science.

    [50] Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production: guidelines on water, soil and crop management. In FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS . Food and Agriculture Organization of the United Nations. http://www.fao.org/3/t0667e/t0667e00.htm#Contents

    [51] Kabeel, A. E., Hamed, M. H., Omara, Z. M., & Sharshir, S. W. (2013). Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review. Natural Resources, 04(03), 286–305. https://doi.org/10.4236/nr.2013.43036

    [52] Curto, D., Franzitta, V., & Guercio, A. (2021). A Review of the Water Desalination Technologies. Applied Sciences, 11(2), 670. https://doi.org/10.3390/app11020670

    [53] Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., & Kang, S. (2019). The state of desalination and brine production: A global outlook. Science of The Total Environment, 657, 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

    [54] Do-Thi, H. T., Pasztor, T., Fozer, D., Manenti, F., & Toth, A. J. (2021). Comparison of desalination technologies using renewable energy sources with life cycle, pestle, and multi-criteria decision analyses. Water (Switzerland), 13(21), 3023. https://doi.org/10.3390/w13213023

    [55] The cost of desalination. (n.d.). Advisian. Retrieved March 25, 2022, from https://www.advisian.com/en/global-perspectives/the-cost-of-desalination

    [56] Alkaisi, A., Mossad, R., & Sharifian-Barforoush, A. (2017). A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia, 110, 268–274. https://doi.org/10.1016/j.egypro.2017.03.138

    [57] Ahmadi, E., McLellan, B., Ogata, S., Mohammadi-Ivatloo, B., & Tezuka, T. (2020). An Integrated Planning Framework for Sustainable Water and Energy Supply. Sustainability, 12(10), 4295. https://doi.org/10.3390/su12104295

    [58] Tzen, E., & Morris, R. (2003). Renewable energy sources for desalination. Solar Energy, 75(5), 375–379. https://doi.org/10.1016/j.solener.2003.07.010

    [59] Almatrafi, E., Goswami, D. Y., Abutayeh, M., Li, C., & Stefanakos, E. K. (2019). Solar Desalination. In Desalination (pp. 525–566). Wiley. https://doi.org/10.1002/9781119407874.ch13

    [60] Free maps and GIS data / Overview | Solargis. (n.d.). Retrieved April 8, 2022, from https://solargis.com/maps-and-gis-data/overview

    [61] Shatat, M., & Riffat, S. B. (2014). Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies, 9(1), 1–19. https://doi.org/10.1093/ijlct/cts025

    [62] Bait, O. (2020). Direct and indirect solar–powered desalination processes loaded with nanoparticles: A review. Sustainable Energy Technologies and Assessments, 37, 100597. https://doi.org/10.1016/j.seta.2019.100597

    [63] Arunkumar, T., Raj, K., Denkenberger, D., & Velraj, R. (2018). Heat carrier nanofluids in solar still – A review. Desalination and Water Treatment, 130, 1–16. https://doi.org/10.5004/dwt.2018.22972

    [64] Dunkle, R. (1961). Solar water distillation: the roof type still and the multiple effect diffusor. International Developments in Heat Transfer, V. https://www.osti.gov/biblio/5052806

    [65] Elango, C., Gunasekaran, N., & Sampathkumar, K. (2015). Thermal models of solar still—A comprehensive review. Renewable and Sustainable Energy Reviews, 47, 856–911. https://doi.org/10.1016/j.rser.2015.03.054

    [66] Shukla, K., & Rai, A. (2008). Analytical thermal modeling of double slope solar still by using inner glass cover temperature. Thermal Science, 12(3), 139–152. https://doi.org/10.2298/TSCI0803139S

    [67] Agrawal, A., & Rana, R. S. (2019). Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon, 5(4), e01525. https://doi.org/10.1016/j.heliyon.2019.e01525

    [68] Sakthivel, M., Shanmugasundaram, S., & Alwarsamy, T. (2010). An experimental study on a regenerative solar still with energy storage medium — Jute cloth. Desalination, 264(1–2), 24–31. https://doi.org/10.1016/j.desal.2010.06.074

    [69] Al-Sulttani, A. O., Ahsan, A., Rahman, A., Nik Daud, N. N., & Idrus, S. (2017). Heat transfer coefficients and yield analysis of a double-slope solar still hybrid with rubber scrapers: An experimental and theoretical study. Desalination, 407, 61–74. https://doi.org/10.1016/j.desal.2016.12.017

    [70] Sethi, A. K., & Dwivedi, V. K. (2013). Design, fabrication, and performance evaluation of double slope active solar still under forced circulation mode. Int. J. of Thermal & Environmental Engineering, 6(1), 27–34.

    [71] Belessiotis, V., Kalogirou, S., & Delyannis, E. (2016). Solar Distillation—Solar Stills. Thermal Solar Desalination, 103–190. https://doi.org/10.1016/B978-0-12-809656-7.00003-9

    [72] El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. Elsevier Science. https://books.google.com.tw/books?id=eqssS2EMBU4C

    [73] National Weather Service. (2022). Dew point vs humidity. National Oceanic and Atmospheric Administration (NOAA). https://www.weather.gov/arx/why_dewpoint_vs_humidity

    [74] Muftah, Ali. F., Alghoul, M. A., Fudholi, A., Abdul-Majeed, M. M., & Sopian, K. (2014). Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews, 32, 430–447. https://doi.org/10.1016/j.rser.2013.12.052

    [75] Nguyen, B. T. (2018). Factors affecting the yield of solar distillation systems and measures to improve productivities. In Desalination and Water Treatment. InTech. https://doi.org/10.5772/intechopen.75593

    [76] Velmurugan, V., & Srithar, K. (2011). Performance analysis of solar stills based on various factors affecting the productivity—A review. Renewable and Sustainable Energy Reviews, 15(2), 1294–1304. https://doi.org/10.1016/j.rser.2010.10.012

    [77] Jathar, L. D., Ganesan, S., Shahapurkar, K., Soudagar, M. E. M., Mujtaba, M. A., Anqi, A. E., Farooq, M., Khidmatgar, A., Goodarzi, M., & Safaei, M. R. (2022). Effect of various factors and diverse approaches to enhance the performance of solar stills: a comprehensive review. Journal of Thermal Analysis and Calorimetry, 147(7), 4491–4522. https://doi.org/10.1007/s10973-021-10826-y

    [78] Nafey, A. S., Abdelkader, M., Abdelmotalip, A., & Mabrouk, A. A. (2000). Parameters affecting solar still productivity. Energy Conversion and Management, 41(16), 1797–1809. https://doi.org/10.1016/S0196-8904(99)00188-0

    [79] Badran, O. O. (2007). Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination, 209(1–3), 136–143. https://doi.org/10.1016/j.desal.2007.04.022

    [80] Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267–284. https://doi.org/10.1016/j.applthermaleng.2015.11.041

    [81] Climate Science Investigations South Florida - Temperature Over Time. (2019, February 12). Climate Science Investigations. http://www.ces.fau.edu/nasa/module-3/why-does-temperature-vary/angle-of-the-sun.php

    [82] Ben Neriah, A., Assouline, S., Shavit, U., & Weisbrod, N. (2014). Impact of ambient conditions on evaporation from porous media. Water Resources Research, 50(8), 6696–6712. https://doi.org/10.1002/2014WR015523

    [83] El-Sebaii, A. A. (2004). Effect of wind speed on active and passive solar stills. Energy Conversion and Management, 45(7–8), 1187–1204. https://doi.org/10.1016/j.enconman.2003.09.036

    [84] Garg, H. P., & Mann, H. S. (1976). Effect of climatic, operational and design parameters on the year round performance of single-sloped and double-sloped solar still under Indian arid zone conditions. Solar Energy, 18(2), 159–163. https://doi.org/10.1016/0038-092X(76)90052-9

    [85] Cooper, P. I. (1969). Digital simulation of transient solar still processes. Solar Energy, 12(3), 313–331. https://doi.org/10.1016/0038-092X(69)90046-2

    [86] Al-Hinai, H., Al-Nassri, M. S., & Jubran, B. A. (2002). Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion and Management, 43(13), 1639–1650. https://doi.org/10.1016/S0196-8904(01)00120-0

    [87] Rajvanshi, A. K. (1981). Effect of various dyes on solar distillation. Solar Energy, 27(1), 51–65. https://doi.org/10.1016/0038-092X(81)90020-7

    [88] Gude, V. G. (2018). Energy Storage for Desalination. In Renewable Energy Powered Desalination Handbook (pp. 377–414). Elsevier. https://doi.org/10.1016/B978-0-12-815244-7.00010-6

    [89] Okibe, A., & Sunday, J. (2013). Contribution of Night Time Yield to the Overall Water Production Capacity of a Simple Basin Solar Still Under Makurdi Climate. American Journal of Engineering Research (AJER), 02, 32–43. www.ajer.org

    [90] Refalo, P., Ghirlando, R., & Abela, S. (2014). The Effect of Climatic Parameters on the Heat Transfer Mechanisms in a Solar Distillation Still. Heat Transfer Engineering, 35(16–17), 1473–1481. https://doi.org/10.1080/01457632.2014.889479

    [91] Eibling, J. A., Talbert, S. G., & Löf, G. O. G. (1971). Solar stills for community use—digest of technology. Solar Energy, 13(2), 263–276. https://doi.org/10.1016/0038-092X(71)90007-7

    [92] Pillai, R., Libin, A. T., & Mani, M. (2015). Study into solar-still performance under sealed and unsealed conditions. International Journal of Low-Carbon Technologies, 10(4), 354–364. https://doi.org/10.1093/ijlct/ctt045

    [93] Usman, K. M., & Muhammad, S. B. (2012). Effects of Some Meteorological Variables on the Performance of Single Slope Solar Stills in Sokoto, North Western Nigeria. International Journal of Scientific and Engineering Research, 3(9).

    [94] Alwan, N., Shcheklein, S., & Ali, O. (2020). Experimental Investigation of Modified Solar Still Productivity under Variable Climatic Conditions. International Journal of Design & Nature and Ecodynamics, 15(1), 15–1. https://doi.org/10.18280/ijdne.150108

    [95] Al-Qadami, E., Ahsan, A., Abdurrasheed, A., Mustaffa, Z., Yusof, K., Takaijudin, H., & Malek, M. (2019). Yield Efficiency Evaluation of Double Slope Solar Stills Connected with External Spiral Copper for Potable Water Production. Journal of Ecological Engineering, 20(7), 176–186. https://doi.org/10.12911/22998993/108654

    [96] Ahsan, A., Alam, Z., A., M., Sharif, A. B. M., & Halim, A. (2011). Evaporation Phenomenon Inside a Solar Still: From Water Surface to Humid Air. In Evaporation, Condensation and Heat transfer. InTech. https://doi.org/10.5772/19921

    [97] Shokri-Kuehni, S. M. S., Vetter, T., Webb, C., & Shokri, N. (2017). New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature. Geophysical Research Letters, 44(11), 5504–5510. https://doi.org/10.1002/2017GL073337

    [98] Hegazy, A. A. (2001). Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renewable Energy, 22(4), 525–540. https://doi.org/10.1016/S0960-1481(00)00093-8

    [99] Bhargva, M., & Yadav, A. (2020). Effect of shading and evaporative cooling of glass cover on the performance of evacuated tube-augmented solar still. Environment, Development and Sustainability, 22(5), 4125–4143. https://doi.org/10.1007/s10668-019-00375-8

    [100] Bechki, D., Bouguettaia, H., Blanco-Galvez, J., Babay, S., Bouchekima, B., Boughali, S., & Mahcene, H. (2010). Effect of partial intermittent shading on the performance of a simple basin solar still in south Algeria. Desalination, 260(1–3), 65–69. https://doi.org/10.1016/j.desal.2010.04.066

    [101] Sugumaran, A. K., & Paulian, S. M. K. (2020). A comparative study on shaded square pyramid shape solar still with thermo-economic analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–13. https://doi.org/10.1080/15567036.2020.1808739

    [102] Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267–284. https://doi.org/10.1016/j.applthermaleng.2015.11.041

    [103] Selvaraj, K., & Natarajan, A. (2018). Factors influencing the performance and productivity of solar stills - A review. Desalination, 435, 181–187. https://doi.org/10.1016/J.DESAL.2017.09.031

    [104] Lawand, T. A., & Ayoub, J. (n.d.). Materials for Construction of Solar Stills. In Encyclopedia of Desalination and Water Resources (DESWARE) (Vol. 3). Retrieved June 8, 2022, from http://www.desware.net/DESWARE-SampleAllChapter.aspx

    [105] Gordes, J., & Mccracken, H. (85 C.E.). Understanding Solar Stills (D. Dunham, J. le Normand, & D. G. Phippen, Eds.). Volunteers in Technical Assistance (VITA). https://pdf.usaid.gov/pdf_docs/pnabc961.pdf

    [106] El-Bassuoni, A.-M. A. (1986). Enhanced solar desalination unit: Modified cascade still. Solar & Wind Technology, 3(3), 189–194. https://doi.org/10.1016/0741-983X(86)90032-9

    [107] Kalidasa Murugavel, K., Chockalingam, K. K. S. K., & Srithar, K. (2008). An experimental study on single basin double slope simulation solar still with thin layer of water in the basin. Desalination, 220(1–3), 687–693. https://doi.org/10.1016/J.DESAL.2007.01.063

    [108] Anburaj, P., Samuel Hansen, R., & Kalidasa Murugavel, K. (2013). Performance of an inclined solar still with rectangular grooves and ridges. Applied Solar Energy, 49(1), 22–26. https://doi.org/10.3103/S0003701X13010027

    [109] Ghoneyem, A., & Ileri, A. (1997). Software to analyze solar stills and an experimental study on the effects of the cover. Desalination, 114(1), 37–44. https://doi.org/10.1016/S0011-9164(97)00152-5

    [110] Panchal, H. N., & Shah, P. K. (2012). Effect of Varying Glass cover thickness on Performance of Solar still: in a Winter Climate Conditions. International Journal of Renewable Energy Research (IJRER), 1(4), 212–223. https://doi.org/10.20508/IJRER.V1I4.65.G58

    [111] Gawande, J. S., & Bhuyar, L. B. (2013). Effect of Glass Cover Thickness on the Performance of Stepped Type Solar Still. International Journal of Innovative Science and Research Technology, 1(3), 19–26. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102988289&partnerID=40&md5=2393562ea030c41185d8e2475ff7773c

    [112] Bakari, R., Minja, R. J. A., & Njau, K. N. (2014). Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying. Journal of Energy, 2014, 1–8. https://doi.org/10.1155/2014/247287

    [113] Panchal, H. (2016). Performance Investigation on Variations of Glass Cover Thickness on Solar Still: Experimental and Theoretical Analysis. Technology and Economics of Smart Grids and Sustainable Energy, 1(1), 7. https://doi.org/10.1007/s40866-016-0007-0

    [114] Chamsa-ard, W., Fawcett, D., Fung, C. C., & Poinern, G. (2020). Solar Thermal Energy Stills for Desalination: A Review of Designs, Operational Parameters and Material Advances. Journal of Energy and Power Technology, 2(4). https://doi.org/10.21926/jept.2004018

    [115] Sun, Z., Tu, W., Fang, S., & Zhong, W. (2022). Comparison between double slope solar still and fourfold slope solar still: energy, exergy, exergoeconomic, and enviroeconomic evaluation. Water Supply, 22(3), 2929–2945. https://doi.org/10.2166/WS.2021.425

    [116] Jegadeesh S, & Manivannan A. (2016). PERFORMANCE COMPARISION OF MULTI SLOPE SOLAR STILL WITH DOUBLE SLOPE STILL. International Journal of Engineering Sciences & Management Research, 3(6). https://doi.org/10.5281/zenodo.55858

    [117] Dwivedi, V. K., & Tiwari, G. N. (2008). Annual energy and exergy analysis of single and double slope passive solar stills. Trends Appl Sci Res, 3(3), 225–241.
    [118] Zheng, H. (2017). Traditional Solar Desalination Units. Solar Energy Desalination Technology, 259–321. https://doi.org/10.1016/B978-0-12-805411-6.00004-X
    \n[119] Manchanda, H., & Kumar, M. (2015). A comprehensive decade review and analysis on designs and performance parameters of passive solar still. Renewables: Wind, Water, and Solar, 2(1). https://doi.org/10.1186/S40807-015-0019-8

    [120] Al-Kharabsheh, S., & Goswami, D. Y. (2004). Solar Distillation and Drying. In Encyclopedia of Energy (pp. 597–606). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00319-3

    [121] Panchal, H., Sadasivuni, K. K., Prajapati, C., Khalid, M., Essa, F. A., Shanmugan, S., Pandya, N., Suresh, M., Israr, M., Dharaskar, S., & Khechekhouche, A. (2020). Productivity enhancement of solar still with thermoelectric modules from groundwater to produce potable water: A review. Groundwater for Sustainable Development, 11, 100429. https://doi.org/10.1016/J.GSD.2020.100429

    [122] Suneesh, P. U., Jayaprakash, R., Namshad, T., & Kumar, S. (2013). Performance of Corrugated Wick in “V” Type Solar Still. Smart Grid and Renewable Energy, 2013(08), 483–487. https://doi.org/10.4236/SGRE.2013.48055

    [123] Suneesh, P. U., Paul, J., Jayaprakash, R., Kumar, S., & Denkenberger, D. (2016). Augmentation of distillate yield in “V”-type inclined wick solar still with cotton gauze cooling under regenerative effect. Cogent Engineering, 3(1). https://doi.org/10.1080/23311916.2016.1202476

    [124] Voropoulos, K., Mathioulakis, E., & Belessiotis, V. (2003). Experimental investigation of the behavior of a solar still coupled with hot water storage tank. Desalination, 156(1–3), 315–322. https://doi.org/10.1016/S0011-9164(03)00362-X

    [125] Tayeb, A. M. (1992). Performance study of some designs of solar stills. Energy Conversion and Management, 33(9), 889–898. https://doi.org/10.1016/0196-8904(92)90018-R

    [126] Ayoub, G. M., Malaeb, L., & Saikaly, P. E. (2013). Critical variables in the performance of a productivity-enhanced solar still. Solar Energy, 98(PC), 472–484. https://doi.org/10.1016/J.SOLENER.2013.09.030

    [127] Dhiman, N. K. (1988). Transient analysis of a spherical solar still. Desalination, 69(1), 47–55. https://doi.org/10.1016/0011-9164(88)80005-5

    [128] Menguy, G., Benoit, M., Louat, R., Makki, A., & Schwartz, M. (1981). New solar still /the wiping spherical still/ - Design and experimentation. Alternative Energy Sources II, Volume 3, 3, 1001–1007. https://ui.adsabs.harvard.edu/abs/1981aes.....3.1001M

    [129] Attia, M. E. H., Kabeel, A. E., Bellila, A., Manokar, A. M., Sathyamurthy, R., Driss, Z., & Muthusamy, S. (2021). A comparative energy and exergy efficiency study of hemispherical and single-slope solar stills. Environmental Science and Pollution Research, 28(27), 35649–35659. https://doi.org/10.1007/s11356-021-13161-9

    [130] Honsberg, C., & Bowden, S. (n.d.). Solar Radiation on a Tilted Surface. PVEducation. Retrieved June 9, 2022, from https://www.pveducation.org/pvcdrom/properties-of-sunlight/solar-radiation-on-a-tilted-surface

    [131] Abdallah, R., Juaidi, A., Abdel-Fattah, S., & Manzano-Agugliaro, F. (2020). Estimating the optimum tilt angles for south-facing surfaces in Palestine. Energies, 13(3). https://doi.org/10.3390/EN13030623

    [132] Liu, F.-J., & Chang, T.-P. (2015). Optimizing the Tilt Angle of Solar Collector under Clear Sky by Particle Swarm Optimization Method. Journal of Applied Science and Engineering, 18(2), 167–172. https://doi.org/10.6180/jase.2015.18.2.09

    [133] Baumgaertner, J. (2016). Solar Irradiation on Tilted Surface, Optimum surface orientation. Green Rhino Energy Ltd. http://www.greenrhinoenergy.com/solar/radiation/tiltedsurface.php

    [134] Singh, H. N., & Tiwari, G. N. (2004). Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination, 168(1–3), 145–150. https://doi.org/10.1016/J.DESAL.2004.06.180

    [135] Cherraye, R., Bouchekima, B., Bechki, D., Bouguettaia, H., & Khechekhouche, A. (2022). The effect of tilt angle on solar still productivity at different seasons in arid conditions (south Algeria). International Journal of Ambient Energy, 43(1), 1847–1853. https://doi.org/10.1080/01430750.2020.1723689

    [136] Khalifa, A. J. N. (2011). On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes. Energy Conversion and Management, 52(1), 431–436. https://doi.org/10.1016/j.enconman.2010.07.018

    [137] Patel, S. K., Kumar, B., Pal, P., Dev, R., & Singh, D. (2020). Production of potable water from Gomti River by using modified double slope solar still with external mounted reflectors. Solar Energy, 209, 576–589. https://doi.org/10.1016/j.solener.2020.09.036

    [138] Kumar, S., Tiwari, G. N., & Singh, H. N. (2000). Annual performance of an active solar distillation system. Desalination, 127(1), 79–88. https://doi.org/10.1016/S0011-9164(99)00194-0

    [139] Singh, S. K., Chaurasiya, P. K., Dwivedi, R., Chhalotre, S., Shanker, R., Choudri, V., & Department, E. (2020). A performance evaluation of single basin double slope passive solar still using different materials as storage medium. International Journal of Creative Research Thoughts, 8(6), 2320–2882. www.ijcrt.org

    [140] El-Maghlany, W. M. (2015). An approach to optimization of double slope solar still geometry for maximum collected solar energy. Alexandria Engineering Journal, 54(4), 823–828. https://doi.org/10.1016/J.AEJ.2015.06.010

    [141] Abderachid, T., & Abdenacer, K. (2013). Effect of orientation on the performance of a symmetric solar still with a double effect solar still (comparison study). Desalination, 329, 68–77. https://doi.org/10.1016/J.DESAL.2013.09.011

    [142] Jamal, W., & Altamush Siddiqui, M. (2012). Effect of water depth and still orientation on productivity for passive solar distillation. International Journal of Engineering Research and Applications (IJERA), 2(2), 1659–1665. www.ijera.com

    [143] Patel, R. V. P., & Kumar, A. (2017). Experimental Investigation of Double Slope Solar Still for the Climatic Condition of Sultanpur. International Journal of Engineering and Technology, 9(6), 4019–4033. https://doi.org/10.21817/ijet/2017/v9i6/170906309

    [144] Gual-Uc, J., Carrillo, J. G., Bassam, A., Flota-Bañuelos, M., & Pineda-Arellano, C. A. (2019). Assessment of a double slope solar still for the distillation of cenote water in the Yucatan peninsula – thermal and economic analysis. Desalination and Water Treatment, 169, 88–101. https://doi.org/10.5004/dwt.2019.24729

    [145] Al-Molhem, Y. A., & Eltawil, M. A. (2020). Enhancing the double-slope solar still performance using simple solar collector and floatable black wicks. Environmental Science and Pollution Research, 27(28), 35078–35098. https://doi.org/10.1007/s11356-020-09509-2

    [146] Patel, R. V., Yadav, A., & Winczek, J. A. (2021). Experimental Investigation and Mathematical Modelling of Heat Transfer Coefficient in Double Slope Solar Still. Strojniški Vestnik – Journal of Mechanical Engineering, 67(7–8), 369–379. https://doi.org/10.5545/sv-jme.2021.7156

    [147] Chhabra, S., Kumar, R., Gupta, A., & Singh Verma, A. (2018). Developing Thermal Model for Single Basin Double Slope Solar Desalination System. International Journal of Applied Engineering Research, 13(6), 308–312. http://www.ripublication.com

    [148] Singw, A. K., Tiwarit, G. N., Sharma, P. B., & Khan, E. (1995). Optimization of Orientation for Higher Yield of Solar Still for a Given Location. Energy Convers. Mgmt, 36(3), 175–187.

    [149] Nayak, A. K., & Dev, R. (n.d.). Thermal Modelling and Performance Study of Modified Double Slope Solar Still. IJRET: International Journal of Research in Engineering and Technology, 2321–7308. Retrieved June 16, 2022, from http://www.ijret.org

    [150] Singh, G., Kumar, S., & Tiwari, G. N. (2011). Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination, 277(1–3), 399–406. https://doi.org/10.1016/J.DESAL.2011.04.064

    [151] Dev, R., Singh, H. N., & Tiwari, G. N. (2011). Characteristic equation of double slope passive solar still. Desalination, 267(2–3), 261–266. https://doi.org/10.1016/j.desal.2010.09.037

    [152] Singh, G. (2021). Performance Analysis of Water Distillation by Two Directional Slop Solar Still Roofs. International Journal of Innovative Research In Technology, 7(9), 19–25. https://ijirt.org/master/publishedpaper/IJIRT150677_PAPER.pdf

    [153] Sundaram, P., & Senthil, R. (2016). Productivity Enhancement of Solar Desalination System Using Paraffin Wax. Int. J. Chem. Sci, 14(4), 2339–2348. www.sadgurupublications.com

    [154] Rubio, E., Fernández-Zayas, J. L., & Porta-Gándara, M. A. (2020). Current Status of Theoretical and Practical Research of Seawater Single-Effect Passive Solar Distillation in Mexico. Journal of Marine Science and Engineering 2020, Vol. 8, Page 94, 8(2), 94. https://doi.org/10.3390/JMSE8020094

    [155] Singh, A. K., Poonia, S., Jain, D., & Mishra, D. (2019). Performance evaluation and economic analysis of solar desalination device made of building materials for hot arid climate of India. Desalination and Water Treatment, 141, 36–41. https://doi.org/10.5004/DWT.2019.23480

    [156] Riahi, A., Zakaria, N. A., Isa, M. H., Wan Yusof, K., Mahinder Singh, B. S., Mustaffa, Z., & Takaijudin, H. (2019). Performance investigation of a solar still having polythene film cover and black painted stainless steel basin integrated with a photovoltaic module–direct current heater: Https://Doi.Org/10.1177/0958305X19865039, 30(8), 1521–1535. https://doi.org/10.1177/0958305X19865039

    [157] Awasthi, A., Kumari, K., Panchal, H., & Sathyamurthy, R. (2018). Environmental Technology Reviews Passive solar still: recent advancements in design and related performance Passive solar still: recent advancements in design and related performance. Environmental Technology Reviews, 7(1), 235–261. https://doi.org/10.1080/21622515.2018.1499364

    [158] Ismail, B. I. (2009). Design and performance of a transportable hemispherical solar still. Renewable Energy, 34(1), 145–150. https://doi.org/10.1016/J.RENENE.2008.03.013

    [159] Gurmu, C. D., Woldeyes, B., & Melese, B. (2017). Experimental Evaluation of Basin Type Solar Still for Saline and Fluoride Water Purification (A Case on Giby-Deep Well Water, Dupti, Afar-Ethiopia). Http://Www.Sciencepublishinggroup.Com, 2(1), 27. https://doi.org/10.11648/J.AJERE.20170201.14

    [160] Abdelaziz, G. B., Algazzar, A. M., El-Said, E. M. S., Elsaid, A. M., Sharshir, S. W., Kabeel, A. E., & El-Behery, S. M. (2021). Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid. Journal of Energy Storage, 41, 102933. https://doi.org/10.1016/J.EST.2021.102933

    [161] Gnanadason, M. K., Kumar, P. S., Wilson, V. H., Kumaravel, A., & Jebadason, B. (2013). Comparison of Performance Analysis betweenSingle Basin Solar Still made up of Copper and GI. International Journal of Innovative Research in Science, Engineering and Technology, 2, 3175–3183.

    [162] Attia, M. E. H., Kaliyaperumal, S., Thangamuthu, G., Rengaraju, I., Mann, S., Jayakumar, S., & Sundararajan, S. C. M. (2022). Impact of water depth on thermal efficiency, exergy efficiency, and exergy losses of finned acrylic solar still: an experimental study. Environmental Science and Pollution Research, 29(15), 21839–21850. https://doi.org/10.1007/S11356-021-17400-X

    [163] Sharshir, S. W., Eltawil, M. A., Algazzar, A. M., Sathyamurthy, R., & Kandeal, A. W. (2020). Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: Energy, exergy and economic analysis. Applied Thermal Engineering, 174, 115278. https://doi.org/10.1016/J.APPLTHERMALENG.2020.115278

    [164] Al-Molhem, Y. A., & Eltawil, M. A. (2020). Enhancing the double-slope solar still performance using simple solar collector and floatable black wicks. Environmental Science and Pollution Research, 27(28), 35078–35098. https://doi.org/10.1007/S11356-020-09509-2

    [165] Mohammed, S. A., Alawee, W. H., Dhahad, H. A., Omara, Z. M., Mohammad, T. A., Mohammed, S. A., Alawee, W. H., Dhahad, H. A., Omara, Z. M., & Mohammad, T. A. (2021). Performance analysis of a solar still using an absorber plate with inclined perforated rectangular fins: Comprehensive study. Journal of Applied Research and Technology, 19(4), 403–419. https://doi.org/10.22201/ICAT.24486736E.2021.19.4.1107

    [166] Attia, M., Manokar, A., Kabeel, A. E., Driss, Z., Sathyamurthy, R., & Al-Kouz, W. (2021). Comparative study of conventional solar still with different basin materials using exergy analysis. Desalination and Water Treatment, 224, 55–64. https://doi.org/10.5004/dwt.2021.27173

    [167] Mugisidi, D., Heriyani, O., & Fathurahman, H. (2018). Comparison of plastic and stainless-steel as solar still material. IOP Conference Series: Materials Science and Engineering, 403, 012089. https://doi.org/10.1088/1757-899X/403/1/012089

    [168] Burbano, A. M. (2014). Evaluation of basin and insulating materials in solar still prototype for solar distillation plant at kamusuchiwo community, high guajira. Renewable Energy and Power Quality Journal, 1(12), 547–552. https://doi.org/10.24084/REPQJ12.395

    [169] Prakash, M., & Natarajan, E. (2015). Asymmetrical Solar Still with Various Basin Materials. Applied Mechanics and Materials, 812, 14–18. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.812.14

    [170] Srivastava, P. K., Srivastava, P. K., & Agrawal, S. K. (2012). Experimental Investigation of some Design and Operating Parameters of Basin Type Solar Still. International Journal of Emerging Technology and Advanced Engineering, 2(5), 225–230. https://doi.org/10.1.1.413.9210

    [171] Arjunan, T. v., Aybar, H., Neelakrishnan, S., Sampathkumar, K., Amjad, S., Subramanian, R., & Nedunchezhian, N. (2012). The Effect of Sponge Liner Colors on the Performance of Simple Solar Stills. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(21), 1984–1994. https://doi.org/10.1080/15567036.2010.490826

    [172] Kabeel, A. E. (2009). Performance of solar still with a concave wick evaporation surface. Energy, 34(10), 1504–1509. https://doi.org/10.1016/j.energy.2009.06.050
    [173] Ahsan, A., Imteaz, M., Rahman, A., Yusuf, B., & Fukuhara, T. (2012). Design, fabrication and performance analysis of an improved solar still. Desalination, 292, 105–112. https://doi.org/10.1016/j.desal.2012.02.013

    [174] Kabeel, A. E., Harby, K., Abdelgaied, M., & Eisa, A. (2020). Performance of the modified tubular solar still integrated with cylindrical parabolic concentrators. Solar Energy, 204, 181–189. https://doi.org/10.1016/j.solener.2020.04.080

    [175] Prasad, A. R., Sathyamurthy, R., Sudhakar, M., Madhu, B., Mageshbabu, D., Manokar, A. M., & Chamkha, A. J. (2021). Effect of Design Parameters on Fresh Water Produced from Triangular Basin and Conventional Basin Solar Still. International Journal of Photoenergy, 2021, 1–8. https://doi.org/10.1155/2021/6619138

    [176] Murugan, D. K., Subramani, S., Thirugnanasambantham, A., & Munuswamy, K. (2022). Thermo-economic comparison of single basin and stacked solar still configurations. Environmental Science and Pollution Research 2022, 1–15. https://doi.org/10.1007/S11356-022-20914-7

    [177] Elango, T., & Kalidasa Murugavel, K. (2015). The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination, 359, 82–91. https://doi.org/10.1016/J.DESAL.2014.12.036

    [178] Rajaseenivasan, T., Murugavel, K. K., Elango, T., & Hansen, R. S. (2013). A review of different methods to enhance the productivity of the multi-effect solar still. Renewable and Sustainable Energy Reviews, 17, 248–259. https://doi.org/10.1016/J.RSER.2012.09.035

    [179] Panchal, H. N., & Patel, S. (2016). Effect of Various Parameters on Augmentation of Distillate Output of Solar Still: A Review. Technology and Economics of Smart Grids and Sustainable Energy, 1(1). https://doi.org/10.1007/S40866-016-0005-2

    [180] Hashim, A. Y. (n.d.). A new design of a single slop double-basin solar still(SSDBS). Journal of Basrah Researches, 37.

    [181] Al-Karaghouli, A. A., & Alnaser, W. E. (2004). Experimental comparative study of the performances of single and double basin solar-stills. Applied Energy, 77(3), 317–325. https://doi.org/10.1016/S0306-2619(03)00124-7

    [182] Xiong, J., Xie, G., & Zheng, H. (2013). Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface. Energy Conversion and Management, 73, 176–185. https://doi.org/10.1016/J.ENCONMAN.2013.04.024

    [183] Suneja, S., & Tiwari, G. N. (1998). Optimization of number of effects for higher yield from an inverted absorber solar still using the Runge-Kutta method. Desalination, 120(3), 197–209. https://doi.org/10.1016/S0011-9164(98)00218-5

    [184] Feilizadeh, M., Soltanieh, M., Karimi Estahbanati, M. R., Jafarpur, K., & Ashrafmansouri, S.-S. (2017). Optimization of geometrical dimensions of single-slope basin-type solar stills. Desalination, 424, 159–168. https://doi.org/10.1016/j.desal.2017.08.005

    [185] Alvarado-Juárez, R., Xamán, J., Álvarez, G., & Hernández-López, I. (2015). Numerical study of heat and mass transfer in a solar still device: Effect of the glass cover. Desalination, 359, 200–211. https://doi.org/10.1016/j.desal.2014.12.034

    [186] Djamal, B., Anderson, T., & Nates, R. (n.d.). Numerical and Experimental validation of natural convection inside single slope solar still. Asia-Pacific Solar Research Conference. Retrieved June 10, 2022, from https://apvi.org.au/solar-research-conference/wp-content/uploads/2021/03/Benhadji-Djamal-Numerical-and-Experimental-validation-of-natural-convection-inside-single-slope-solar-still.pdf

    [187] Kumar Gupta, A., Singh, P., & Professor RITS, A. (2019). An Experimental Study And Performance Analysis of Double Slope Solar Still Filled With Aluminum And Granite At Different Depth of Water 1. www.ijedr.org

    [188] Sharshir, S. W., Salman, M., El-Behery, S. M., Halim, M. A., & Abdelaziz, G. B. (2021). Enhancement of solar still performance via wet wick, different aspect ratios, cover cooling, and reflectors. International Journal of Energy and Environmental Engineering 2021 12:3, 12(3), 517–530. https://doi.org/10.1007/S40095-021-00386-0

    [189] Feilizadeh, M., Soltanieh, M., Karimi Estahbanati, M. R., Jafarpur, K., & Ashrafmansouri, S. S. (2017). Optimization of geometrical dimensions of single-slope basin-type solar stills. Desalination, 424, 159–168. https://doi.org/10.1016/J.DESAL.2017.08.005

    [190] Madhlopa, A., & Clarke, J. A. (2011). Theoretical Study of the Aspect Ratio of a Solar Still with Double Slopes. Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden, 57, 3873–3880. https://doi.org/10.3384/ECP110573873

    [191] El-Swify, M. E., & Metias, M. Z. (2002). Performance of double exposure solar still. Renewable Energy, 26(4), 531–547. https://doi.org/10.1016/S0960-1481(01)00160-4

    [192] Narayanan, S. S., Yadav, A., & Khaled, M. N. (2020). A concise review on performance improvement of solar stills. SN Applied Sciences, 2(3), 1–15. https://doi.org/10.1007/S42452-020-2291-5/TABLES/2

    [193] Hashim, A. Y., Al-Asadi, J. M., & Taha, W. A. (2009). Experimental investigation of symmetrical double slope single basin solar stills productivity with different Insulation. Journal of Kufa-Physics, 1(2), 11–12.

    [194] Muthu Manokar, A., Taamneh, Y., Kabeel, A. E., Prince Winston, D., Vijayabalan, P., Balaji, D., Sathyamurthy, R., Padmanaba Sundar, S., & Mageshbabu, D. (2020). Effect of water depth and insulation on the productivity of an acrylic pyramid solar still – An experimental study. Groundwater for Sustainable Development, 10, 100319. https://doi.org/10.1016/J.GSD.2019.100319

    [195] Khalifa, A. J. N., & Hamood, A. M. (2009). Effect of insulation thickness on the productivity of basin type solar stills: An experimental verification under local climate. Energy Conversion and Management, 50(9), 2457–2461. https://doi.org/10.1016/j.enconman.2009.06.007

    [196] Kamal, W. A. (1988). A theoretical and experimental study of the basin-type solar still under the arabian gulf climatic conditions. Solar and Wind Technology, 5(2), 147–157. https://doi.org/10.1016/0741-983X(88)90074-4

    [197] D’Cotha, J. S., Sajeesh, P., Suresh, P. R., & Jithu, J. (2021). Inherent configuration characteristics altering the distillate enhancement of passive stepped solar still: A review. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/J.JKSUES.2021.10.001

    [198] Jamil, B., & Akhtar, N. (2017). Effect of specific height on the performance of a single slope solar still: An experimental study. Desalination, 414, 73–88. https://doi.org/10.1016/J.DESAL.2017.03.036

    [199] Feilizadeh, M., Karimi Estahbanati, M. R., Ahsan, A., Jafarpur, K., & Mersaghian, A. (2016). Effects of water and basin depths in single basin solar stills: An experimental and theoretical study. Energy Conversion and Management, 122, 174–181. https://doi.org/10.1016/J.ENCONMAN.2016.05.048

    [200] Manikandan, V., Shanmugasundaram, K., Shanmugan, S., Janarthanan, B., & Chandrasekaran, J. (2013). Wick type solar stills: A review. Renewable and Sustainable Energy Reviews, 20, 322–335. https://doi.org/10.1016/J.RSER.2012.11.046

    [201] Srivastava, P. K., & Agrawal, S. K. (2013). Winter and summer performance of single sloped basin type solar still integrated with extended porous fins. Desalination, 319, 73–78. https://doi.org/10.1016/J.DESAL.2013.03.030

    [202] Suresh, T., Syed Abuthahir, A., Tamilazhagan, A., Sathishkumar, T. R., Jegadeeswaran, S., & Scholar, U. G. (2008). A Review on Modified Solar Stills with Thermal Energy Storage and Fins. International Research Journal of Engineering and Technology, 9001, 1216. www.irjet.net

    [203] Prajapati, U., Gupta, B., & Bhalavi, J. (2019). Performance improvement of double slope solar still using aluminium fins and phase change material. 6, 295–302.

    [204] Moungar, H., Azzi, A., Youcef, S., & Hieda, A. (2018). Double slope solar still with immersed fins: Theoretical and experimental study. UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 80.

    [205] Kalidasa Murugavel, K., & Srithar, K. (2011). Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy, 36(2), 612–620. https://doi.org/10.1016/J.RENENE.2010.08.009

    [206] El-Sebaii, A. A., Ramadan, M. R. I., Aboul-Enein, S., & El-Naggar, M. (2015). Effect of fin configuration parameters on single basin solar still performance. Desalination, 365, 15–24. https://doi.org/10.1016/J.DESAL.2015.02.002

    [207] Al-Jewaree, H. A. (2018). Experimentally Study the Effects of Fins Height and Space Ratio (HS) to the Fin thermal performance by Natural Convections. IOP Conference Series: Materials Science and Engineering, 454(1). https://doi.org/10.1088/1757-899X/454/1/012128

    [208] Mohammed, S. A., Alawee, W. H., Dhahad, H. A., Omara, Z. M., Mohammad, T. A., Mohammed, S. A., Alawee, W. H., Dhahad, H. A., Omara, Z. M., & Mohammad, T. A. (2021). Performance analysis of a solar still using an absorber plate with inclined perforated rectangular fins: Comprehensive study. Journal of Applied Research and Technology, 19(4), 403–419. https://doi.org/10.22201/ICAT.24486736E.2021.19.4.1107

    [209] Abdullah, A. S., Essa, F. A., & Omara, Z. M. (2021). Effect of different wick materials on solar still performance – a review. International Journal of Ambient Energy, 42(9), 1055–1082. https://doi.org/10.1080/01430750.2018.1563808

    [210] Pal, P., Yadav, P., Dev, R., & Singh, D. (2017). Performance analysis of modified basin type double slope multi–wick solar still. Desalination, 422, 68–82. https://doi.org/10.1016/j.desal.2017.08.009

    [211] Aybar, H. Ş., Irani, F., & Arslan, M. (2016). Performance analysis of single and double basin-inclined solar water distillation systems with and without black-fleece wick. Desalination and Water Treatment, 57(37), 17167–17181. https://doi.org/10.1080/19443994.2015.1085917

    [212] Ahmed, H., & Ibrahim, G. (2016). Performance Evaluation of a Conventional Solar Still with Different Types and layouts of Wick Materials. Vol.6, 5–14.

    [213] Saravanan, A., & Murugan, M. (2020). Performance evaluation of square pyramid solar still with various vertical wick materials – An experimental approach. Thermal Science and Engineering Progress, 19, 100581. https://doi.org/10.1016/j.tsep.2020.100581

    [214] Kumar, B., & Das, A. (2014). Vertical wicking behavior of knitted fabrics. Fibers and Polymers, 15(3), 625–631. https://doi.org/10.1007/s12221-014-0625-x

    [215] Jobrane, M., Kopmeier, A., Kahn, A., Cauchie, H.-M., Kharroubi, A., & Penny, C. (2021). Internal and external improvements of wick type solar stills in different configurations for drinking water production– A review. Groundwater for Sustainable Development, 12, 100519. https://doi.org/10.1016/j.gsd.2020.100519

    [216] El-Sebaii, A. A., Aboul-Enein, S., Ramadan, M. R. I., & E El-Bialy. (2000). Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber. Energy, 25(1), 35–49. https://doi.org/10.1016/S0360-5442(99)00037-7

    [217] Kalidasa Murugavel, K., Chockalingam, K. K. S. K., & Srithar, K. (2008). Progresses in improving the effectiveness of the single basin passive solar still. Desalination, 220(1–3), 677–686. https://doi.org/10.1016/J.DESAL.2007.01.062

    [218] Sadineni, S. B., Hurt, R., Halford, C. K., & Boehm, R. F. (2008). Theory and experimental investigation of a weir-type inclined solar still. Energy, 33(1), 71–80. https://doi.org/10.1016/J.ENERGY.2007.08.003

    [219] Mu, L., Chen, L., Lin, L., Park, Y. H., Wang, H., Xu, P., Kota, K., & Kuravi, S. (2021). An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective. Renewable and Sustainable Energy Reviews, 150, 111458. https://doi.org/10.1016/J.RSER.2021.111458

    [220] Tanaka, H. (2009). Effect of inclination of external reflector of basin type still in summer. Desalination, 242(1–3), 205–214. https://doi.org/10.1016/j.desal.2008.04.007

    [221] Tanaka, H. (2009). Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination, 249(1), 130–134. https://doi.org/10.1016/J.DESAL.2009.02.057

    [222] Monowe, P., Masale, M., Nijegorodov, N., & Vasilenko, V. (2011). A portable single-basin solar still with an external reflecting booster and an outside condenser. Desalination, 280(1–3), 332–338. https://doi.org/10.1016/J.DESAL.2011.07.031

    [223] Abdallah, S., Badran, O., & Abu-Khader, M. M. (2008). Performance evaluation of a modified design of a single slope solar still. Desalination, 219(1–3), 222–230. https://doi.org/10.1016/J.DESAL.2007.05.015

    [224] Tleimat, M. (2015). Solar-Powered Desalination. Sunworld, 10(2), 55–57, 64. https://doi.org/10.5772/60436

    [225] Tiwari, G. N., Dimri, V., Singh, U., Chel, A., & Sarkar, B. (2007). Comparative thermal performance evaluation of an active solar distillation system. International Journal of Energy Research, 31(15), 1465–1482. https://doi.org/10.1002/ER.1314

    [226] Shafieian, A., Khiadani, M., & Nosrati, A. (2018). A review of latest developments, progress, and applications of heat pipe solar collectors. Renewable and Sustainable Energy Reviews, 95, 273–304. https://doi.org/10.1016/j.rser.2018.07.014

    [227] Choi, Y. (2018). An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions. Energies, 11(7), 1626. https://doi.org/10.3390/en11071626

    [228] Sampathkumar, K., Arjunan, T. v., & Senthilkumar, P. (2013). The experimental investigation of a solar still coupled with an evacuated tube collector. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 35(3), 261–270. https://doi.org/10.1080/15567036.2010.511426

    [229] Bhargva, M., & Yadav, A. (2020). Experimental comparative study on a solar still combined with evacuated tubes and a heat exchanger at different water depths. International Journal of Sustainable Engineering, 13(3), 218–229. https://doi.org/10.1080/19397038.2019.1653396

    [230] Sanserwal, M., & Singh, P. (2021). Single Slope Single Basin Active Solar Still Integrated with ETCs: A Review. Lecture Notes in Mechanical Engineering, 117–130. https://doi.org/10.1007/978-981-15-9678-0_10/TABLES/3

    [231] Rashak, Q. A., Jassim, A., & Khanfoos, H. N. (2016). Improving the productivity of solar still using evacuated tubes. International Journal of Energy and Environment (IJEE), 7(5), 375–382. www.IJEE.IEEFoundation.org

    [232] Ahmed, S. T. (1988). Study of single-effect solar still with an internal condenser. Solar & Wind Technology, 5(6), 637–643. https://doi.org/10.1016/0741-983X(88)90061-6

    [233] Kabeel, A. E., Omara, Z. M., & Essa, F. A. (2014). Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Conversion and Management, 78, 493–498. https://doi.org/10.1016/J.ENCONMAN.2013.11.013

    [234] Omara, Z. M., Abdullah, A. S., Kabeel, A. E., & Essa, F. A. (2017). The cooling techniques of the solar stills’ glass covers – A review. Renewable and Sustainable Energy Reviews, 78, 176–193. https://doi.org/10.1016/J.RSER.2017.04.085

    [235] Tripathi, R., & Tiwari, G. N. (2006). Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Solar Energy, 80(8), 956–967. https://doi.org/10.1016/J.SOLENER.2005.08.002

    [236] Taghvaei, H., Taghvaei, H., Jafarpur, K., Karimi Estahbanati, M. R., Feilizadeh, M., Feilizadeh, M., & Seddigh Ardekani, A. (2014). A thorough investigation of the effects of water depth on the performance of active solar stills. Desalination, 347, 77–85. https://doi.org/10.1016/J.DESAL.2014.05.038

    [237] Balamurugan, S., Sundaram, N. S., Marimuthu, K. P., & Devaraj, J. (2017). A Comparative Analysis and Effect of Water Depth on the Performance of Single Slope Basin Type Passive Solar Still Coupled with Flat Plate Collector and Evacuated Tube Collector. Applied Mechanics and Materials, 867, 195–202. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.867.195

    [238] Keshtkar, M., Eslami, M., & Jafarpur, K. (2020). Effect of design parameters on performance of passive basin solar stills considering instantaneous ambient conditions: A transient CFD modeling. Solar Energy, 201, 884–907. https://doi.org/10.1016/J.SOLENER.2020.03.068

    [239] Patel, R. V. P., & Kumar, A. (2017). Experimental Investigation of Double Slope Solar Still for the Climatic Condition of Sultanpur. International Journal of Engineering and Technology, 9(6), 4019–4033. https://doi.org/10.21817/ijet/2017/v9i6/170906309

    [240] Ithape, P. K., Barve, S. B., & Nadgire, A. R. (2017). Climatic and Design Parameters Effects on the Productivity of Solar Stills: A Review. International Journal of Current Engineering And Scientific Research (IJCESR), 4(7), 2394–0697. http://troindia.in/journal/ijcesr/vol4iss7/17-23.pdf

    [241] Delyannis, A. A., & Delyannis, E. A. (2013). Sauerstoff: Anhangband Water Desalting Wasser-Entsalzung. Springer Berlin Heidelberg. https://books.google.com.tw/books?id=GP_uCAAAQBAJ

    [242] Furukawa, D. H. (1996). Desalination processes and technologies. http://inis.iaea.org/search/search.aspx?orig_q=RN:28008685

    [243] Lachish, U. (n.d.). Optimizing the Efficiency of Reverse Osmosis Seawater Desalination. Retrieved June 11, 2022, from https://urila.tripod.com/Seawater.htm

    [244] Kabeel, A. E., Hamed, M. H., Omara, Z. M., & Sharshir, S. W. (2013). Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review. Natural Resources, 04(03), 286–305. https://doi.org/10.4236/NR.2013.43036

    [245] Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., & Kang, S. (2019). The state of desalination and brine production: A global outlook. Science of The Total Environment, 657, 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076

    [246] Omerspahic, M., Al-Jabri, H., Siddiqui, S. A., & Saadaoui, I. (2022). Characteristics of Desalination Brine and Its Impacts on Marine Chemistry and Health, With Emphasis on the Persian/Arabian Gulf: A Review. Frontiers in Marine Science, 0, 525. https://doi.org/10.3389/FMARS.2022.845113

    [247] Eltawil, M., Zhao, Z., & Yuan, L. (2008). Renewable Energy Powered Desalination Systems: Technologies and Economics-State of the Art. Twelfth International Water Technology Conference, 1099–1136.

    [248] Sahu, P. (2021). A comprehensive review of saline effluent disposal and treatment: Conventional practices, emerging technologies, and future potential. Journal of Water Reuse and Desalination, 11(1), 33–65. https://doi.org/10.2166/WRD.2020.065/776561/JWRD2020065.PDF

    [249] Mahdi, J. T., Smith, B. E., & Sharif, A. O. (2011). An experimental wick-type solar still system: Design and construction. Desalination, 267(2–3), 233–238. https://doi.org/10.1016/J.DESAL.2010.09.032

    [250] Rai, S. N., Dutt, D. K., & Tiwari, G. N. (1990). Some experimental studies of a single basin solar still. Energy Conversion and Management, 30(2), 149–153. https://doi.org/10.1016/0196-8904(90)90026-U

    [251] Dev, R., Abdul-Wahab, S. A., & Tiwari, G. N. (2011). Performance study of the inverted absorber solar still with water depth and total dissolved solid. Applied Energy, 88(1), 252–264. https://doi.org/10.1016/J.APENERGY.2010.08.001

    [252] Zhang, J., Borg, M. K., Sefiane, K., & Reese, J. M. (2015). Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation. Physical Review E, 92(5), 052403. https://doi.org/10.1103/PhysRevE.92.052403

    [253] Obianyo, J. I. (2019). Effect of Salinity on Evaporation and the Water Cycle. Emerging Science Journal, 3(4), 255–262. https://doi.org/10.28991/esj-2019-01188

    [254] El-Dessouky, H. T., Ettouney, H. M., Alatiqi, I. M., & Al-Shamari, M. A. (2002). Evaporation Rates from Fresh and Saline Water in Moving Air. Industrial & Engineering Chemistry Research, 41(3), 642–650. https://doi.org/10.1021/ie010327o

    [255] Dehghan, M., Ghasemizadeh, M., & Rashidi, S. (2022). Chapter 4 - Solar-driven water treatment: generation II technologies. In O. Mahian, J. Wei, R. A. Taylor, & S. Wongwises (Eds.), Solar-Driven Water Treatment (pp. 119–200). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90991-4.00006-2

    [256] Hunkyun, P. (2017). Low-Cost Multi-Effect Solar Still: Alternative Appropriate Technology for Personal Desalination. Desalination. https://doi.org/10.5772/INTECHOPEN.68365

    [257] Chong, T.-L., Huang, B.-J., Wu, P.-H., & Kao, Y.-C. (2014). Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe. Desalination, 347, 66–76. https://doi.org/10.1016/j.desal.2014.05.023

    [258] Nomor, E., Islam, R., Alim, M. A., & Rahman, A. (2021). Production of Fresh Water by a Solar Still: An Experimental Case Study in Australia. Water, 13(23), 3373. https://doi.org/10.3390/w13233373

    [259] Gnanaraj, S., & Ramachandran, S. (2022). Identification of operational parameter levels that optimize the production in solar stills with plain, corrugated, and compartmental basin. Environmental Science and Pollution Research International , 29(5), 7096–7116.

    [260] Younis, S. M., El-Shakweer, M. H., El-danasary, M. M., Gharieb, A. A., & Mourad, R. I. (2010). Effect of Some Factors on Water Distillation by Solar Energy. Misr Journal of Agricultural Engineering, 27(2), 586–599. https://doi.org/10.21608/mjae.2010.105848

    [261] Mashaly, A. F., & Alazba, A. A. (2017). Thermal performance analysis of an inclined passive solar still using agricultural drainage water and artificial neural network in arid climate. Solar Energy, 153, 383–395. https://doi.org/10.1016/j.solener.2017.05.083

    [262] Gupta, P., & Singh, N. (2015). The Prediction of Productivity of Single Slope Solar Still: A Regression Approach. International Journal of Scientific Research (IJSR), 4(9), 320–322.

    [263] Dumka, P., & Mishra, D. R. (2022). An estimation of the distillate output from a CSS based on multivariable regression analysis. International Journal of Ambient Energy, 43(1), 2417–2422. https://doi.org/10.1080/01430750.2020.1736625

    [264] Tsilingiris, P. T. (2010). Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems – The Chilton–Colburn analogy. Solar Energy, 84(2), 308–317. https://doi.org/10.1016/j.solener.2009.11.012

    [265] Kumar, S., & Tiwari, G. N. (1996). Estimation of convective mass transfer in solar distillation systems. Solar Energy, 57(6), 459–464. https://doi.org/10.1016/S0038-092X(96)00122-3

    [266] Singh, N., & Francis, V. (2013). Investigating the Effect of Water Temperature and Inclination Angle on the Performance of Single Slope Solar Still: A Taguchi Approach. International Journal of Engineering Research and Applications (IJERA), 3(4), 404–407.

    [267] Tarawneh, M., Sethupathi, P. V. R., & Senthil, P. (2016). Parametric Optimization for Improving the Performance of Single Slope Solar Still Through Experimental Studies. International Journal of Engineering Sciences & Research Technology, 5(9), 291–299. https://doi.org/10.5281/zenodo.154192

    [268] Mathioulakis, E., Voropoulos, K., & Belessiotis, V. (1999). Modeling and prediction of long-term performance of solar stills. Desalination, 122(1), 85–93. https://doi.org/10.1016/S0011-9164(99)00030-2

    [269] Yadav, N., & Raich, V. (2020). An Implementation of Double Slope Basin Solar Still Plant Design to Predict the Distillate Yield and Instantaneous Efficiency. International Journal of Innovative Technology and Exploring Engineering, 9(4), 2430–2433. https://doi.org/10.35940/ijitee.D1889.029420

    [270] WHO. (2017). Guidelines for Drinking Water Quality. In Guidelines for Drinking-Water Quality (4th ed.). World Health Organization. https://www.who.int/publications/i/item/9789241549950

    [271] Omer, N. H. (2019). Water Quality Parameters. Water Quality - Science, Assessments and Policy. https://doi.org/10.5772/INTECHOPEN.89657

    [272] Pilson, M. E. Q. (2012). An Introduction to the Chemistry of the Sea. Cambridge University Press. https://books.google.com.tw/books?id=5f0fAwAAQBAJ

    [273] Chang, Y.-P. (2010). Optimal the tilt angles for photovoltaic modules in Taiwan. International Journal of Electrical Power & Energy Systems, 32(9), 956–964. https://doi.org/10.1016/j.ijepes.2010.02.010

    [274] The SketchUp Team. (2019). 3D Design Software 3D Modeling on the Web SketchUp. Trimble Inc. https://www.sketchup.com/%0Ahttps://www.sketchup.com/%0Ahttps://www.sketchup.com/page/homepage

    [275] Dassault Systèmes. (2022). SOLIDWORKS. https://www.solidworks.com/

    [276] Lin, P., Lee, C., Yen, T., & Lee, H. (n.d.). Monthly Mean. Central Weather Bureau; Citeseer. Retrieved June 5, 2022, from https://www.cwb.gov.tw/V8/E/C/Statistics/monthlymean.html

    [277] Copper, J. C. (2022, June 12). Taiwan. Encyclopedia Britannica. https://www.britannica.com/place/Taiwan

    [278] Hsu, H.-H., & Chen, C.-T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79(1–2), 87–104. https://doi.org/10.1007/s703-002-8230-x

    [279] Salter, C. L., & Gritzner, C. F. (2009). Taiwan (1st ed.). Infobase Publishing.

    [280] Chinese National Standards 15165-1. (2008). Test Method for Solar Collectors—Part 1: Thermal Performance of Glazed Liquid Heating Collectors Including Pressure Drop. In CNS 15165-1. Central Bureau of Standard.

    [281] Chung, K.-M., Chen, C.-C., & Chang, K.-C. (2018). Effect of diffuse solar radiation on the thermal performance of solar collectors. Case Studies in Thermal Engineering, 12, 759–764. https://doi.org/10.1016/j.csite.2018.10.006

    [282] Minitab Ltd. (2022). Data Analysis, Statistical & Process Improvement Tools | Minitab. Minitab. https://www.minitab.com/en-us/

    [283] Mendenhall, W. M., & Sincich, T. L. (2016). Statistics for Engineering and the Sciences. CRC Press. https://books.google.com.tw/books?id=x73RDwAAQBAJ

    [284] Larose, D. T. (2006). Data Mining Methods and Models. Wiley. https://books.google.com.tw/books?id=xR_dHaEugEYC

    [285] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis. Wiley. https://books.google.com.tw/books?id=Y2wYEAAAQBAJ

    [286] Kenton, W. (2021, August 4). Durbin Watson Statistic Definition. https://www.investopedia.com/terms/d/durbin-watson-statistic.asp

    [287] 11.3 - Best Subsets Regression, Adjusted R-Sq, Mallows Cp | STAT 462. (n.d.). Retrieved June 5, 2022, from https://online.stat.psu.edu/stat462/node/197/

    [288] Singh, P. (2013). P Value, Statistical Significance and Clinical Significance. Journal of Clinical and Preventive Cardiology. https://www.jcpcarchives.org/full/p-value-statistical-significance-and-clinical-significance-121.php

    [289] Chugh, A. (2020). MAE, MSE, RMSE, Coefficient of Determination, Adjusted R Squared — Which Metric is Better? Analytics Vidhya. https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e

    [290] Pardoe, I. (2015). Welcome to STAT 507! | STAT 507. The Pennsylvania State University. https://onlinecourses.science.psu.edu/stat507/

    [291] EPA. (n.d.). 環境檢驗所-水質. Retrieved July 23, 2022, from https://www.epa.gov.tw/niea/32A85B63C9EC18C0

    [292] Drinking Water Quality Standards - Article Content - Laws & Regulations Database of The Republic of China (Taiwan). (2022). https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=O0040019

    [293] AYBAR, H. S. (2007). A Review of Desalination by Solar Still. In Solar Desalination for the 21st Century (pp. 207–214). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5508-9_15

    [294] Gnanaraj, S. J. P., & Velmurugan, V. (2019). An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination, 467, 12–28. https://doi.org/10.1016/j.desal.2019.05.015

    [295] Dwivedi, V. K., & Tiwari, G. N. (2010). Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination, 250(1), 49–55. https://doi.org/10.1016/j.desal.2009.06.060

    [296] Karanja, K., Kamau, N., & Kinyua, R. (2017). Qualityand economic analysis of a double sloped solar still for household use in Kilifi County, Kenya. International Journal Of Advanced Research in Engineering & Management (IJAREM), 3(4), 70–78. www.kenyalaw.org

    [297] Prajapati, U., Gupta, B., & Bhalavi, J. (2019). Performance improvement of double slope solar still using aluminium fins and phase change material. 6, 295–302.

    [298] Gálvez, J. B. (2010). Solar Energy Conversion and Photoenergy Systems: Thermal Systems and Desalination Plants-Volume II (S. Rodriguez, E. Delyannis, V. Belessiotis, S. Bhattacharya, & S. Kumar, Eds.). EOLSS Publications. https://books.google.com.tw/books?id=sm7JDAAAQBAJ

    [299] Malik, M. A. S., Tiwari, G. N., Kumar, A., & Sodha, M. S. (1982). Solar distillation : a practical study of a wide range of stills and their optimum design, construction and performance. Pergamon Press.

    [300] Patel, S. K., Biesheuvel, P. M., & Elimelech, M. (2021). Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, 1(5), 851–864. https://doi.org/10.1021/acsestengg.0c00192

    [301] Pan, S.-Y., Snyder, S. W., Lin, Y. J., & Chiang, P.-C. (2018). Electrokinetic desalination of brackish water and associated challenges in the water and energy nexus. Environmental Science: Water Research & Technology, 4(5), 613–638. https://doi.org/10.1039/C7EW00550D

    [302] Nandi, G., & Sharma, R. K. (2020). Data Science Fundamentals and Practical Approaches: Understand Why Data Science Is the Next. BPB Publications. https://books.google.com.tw/books?id=RKvoDwAAQBAJ

    [303] Cirillo, A. (2017). R Data Mining: Implement data mining techniques through practical use cases and real world datasets. Packt Publishing. https://books.google.com.tw/books?id=okBPDwAAQBAJ

    [304] Berenson, M., Levine, D., Szabat, K. A., & Krehbiel, T. C. (2012). Basic Business Statistics: Concepts and Applications. Pearson Higher Education AU. https://books.google.com.tw/books?id=2TDiBAAAQBAJ

    [305] Minitab. (2019). Model summary table for Fit Regression Model. https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/model-summary-table/

    [306] Feria-Díaz, J. J., López-Méndez, M. C., Ortiz-Monterde, L., Médina-Salgado, B. A., & Perez-Rosas, N. C. (2022). Performance Evaluation of Solar Still in Veracruz, Mexico Gulf Coastline. Water, 14(10), 1567. https://doi.org/10.3390/w14101567

    [307] Xie, Z. E. (2022). Mapping the Global Solar Radiation and Diffuse Fraction Distributions in Taiwan Using Kriging Method. National Cheng Kung University.

    [308] Central Weather Bureau. (n.d.). Retrieved July 10, 2022, from https://www.cwb.gov.tw/eng/

    [309] 臺鹽TAIYEN全球資訊網|產品專區. (n.d.). Retrieved May 5, 2022, from https://www.tybio.com.tw/taiyen/en/product/Salt/brand/ALL

    [310] Wibowo, A. I., & Chang, K.-C. (2019). Provision of Clean Water in Remote Village / Islet through Solar Energy Application: Case of Indonesia. 2019 IEEE 3rd International Conference on Green Energy and Applications (ICGEA), 193–198. https://doi.org/10.1109/ICGEA.2019.8880790

    下載圖示 校內:2024-08-05公開
    校外:2024-08-05公開
    QR CODE