| 研究生: |
陳韋安 Chen, Wei-An |
|---|---|
| 論文名稱: |
設計、合成苦馬豆素為基礎之雙環亞胺醣 Design and Synthesis of Swainsonine-Based Bicyclic Iminosugars |
| 指導教授: |
鄭偉杰
Cheng, Wei-Chieh |
| 共同指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 186 |
| 中文關鍵詞: | 亞胺醣 、吲哚里西汀 、苦馬豆素 、a-甘露糖苷酶 、糖苷酶抑制劑 、選擇性抑制劑 、組合式化學 |
| 外文關鍵詞: | Iminosugar, Indolizidine, Swainsonine, a-Mannosidase, glycosidase inhibitor, Selective inhibitor, Combinatorial chemistry |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亞胺醣(iminosugar)是具有藥效潛力的糖苷酶抑制劑(glycosidase inhibitor)並能夠應用於許多疾病,例如:癌症、糖尿病、病毒、溶小體儲積症等等。由化學角度出發,質子化的亞胺醣被認為能夠模擬醣苷酶水解時的過渡態中間體(oxacarbenium ion)而達到抑制酵素的效果。苦馬豆素(swainsonine) 為一種廣為人知的吲哚里西汀類(indolizidine)天然雙環亞胺醣,因為其對於a-甘露糖苷酶(Golgi a-mannosidase II, hGMII)具有很強力的抑制作用,透過抑制a-甘露糖苷酶能夠影響癌症細胞表面醣蛋白(glycoprotein)的型態,進而抑制癌細胞的轉移,因此,長年以來,科學家對苦馬豆素深感興趣並發展出許多的合成方式。另一方面,苦馬豆素也對於細胞內另一個a-甘露糖苷酶(lysosomal a-mannosidase, hLM)有很強的抑制,因而造成細胞內受質堆積的嚴重副作用-溶小體儲積症,因此限制苦馬豆素在臨床上的應用,針對這兩個酵素發展具有選擇性的抑制劑將有潛力發展為癌症相關的藥物。
本論文之分為兩個章節,透過立體選擇性的反應快速製備一系列苦馬豆素類似物,並利用硝酮(nitrone)官能基製備胺基化之苦馬豆素 (章節一)。藉由先前實驗室的方法及經驗,我們設計、合成出一系列新的苦馬豆素骨架,經由初步生物活性測試篩選出候選分子(2-7b),再經由快速的組合式化學(combinatorial chemistry)進行取代基修飾,製備以苦馬豆素為骨架的分子庫,並再次檢測其對於human Lysosomal mannosidase (hLM)和human Golgi mannosidase II (hGMII)的抑制能力及選擇性,參考當中具有較強抑制力或是選擇性的分子(2-7b-6C)之結構重新合成(resynthesis)一系列結構類似之新型抑制劑,經由生物活性測試得到結構活性關係及2-7b-6C為目前選擇性最佳之抑制劑,另外,我們設計之抑制劑對於hGMII為非競爭抑制劑 (non-competitive inhibitor),加上此論文實驗使用之人造酶底物(enzyme substrate)和天然的酶底物具有結構上的差異,因此未來將使用天然的酶底物加上高效能液相層析儀(HPLC)進行更進一步的實驗,以期找出新穎hGMII選擇性抑制劑 (章節二)。
Iminosugars have received immense attention due to their broad-spectrum biological application, especially inhibitory activity against various sugar-processing enzymes related to many diseases such as diabetes, cancer, viral infections, and lysosomal storage disorders. The protonated iminosugar mimics the transition state of sugar during processing, the oxocarbenium ion. This similarity enables iminosugars to compete with natural substrates and act as the inhibitors of sugar processing enzyme. Swainsonine, a naturally occurring trihydroxylated indolizidine alkaloid, had been of long-standing interest due to its potent inhibitory activity against Golgi a-mannosidase II (GMII). Inhibition of GMII leads to alteration of the glycosylation pattern of glycoproteins present on the cancer cell surface which is associated with metastasis and disease progression. On the other hand, swainsonine is also associated with side effects such as unwanted co-inhibition of the lysosomal a-mannosidase (LM) causing the accumulation of high-mannose oligosaccharide in tissues, so-called mannosidosis, which limits its use in the clinical trials. Therefore, our goal was to develop selective inhibitors of GMII.
In this dissertation, we report a flexible, stereoselective and straightforward route to synthesize a series of swainsonine analogues bearing different ring size and C8 chirality. In addition, we also prepared amino-modified swainsonine derivatives using nitrone functional group. The structure-activity relationship of these swainsonine analogues was studied and the results revealed the importance of six-membered ring, C8 chirality and the hydroxyl group at C8 position (Chapter 1).
The novel swainsonine-based scaffolds, 3-aminomethyl swainsonines, were designed and synthesized according to the previous studies reported by our laboratory. After preliminary activity screening of these compounds against hLM and hGMII, candidate molecule (2-7b) showed its ability as an inhibitor against hLM (Ki = 413 nM, competitive) and hGMII (Ki = 0.65 uM, noncompetitive) and was selected for the further diversification via combinatorial chemistry to prepare (thio)urea type library. After screening, the molecule (2-7b-6C) was discovered as a noncompetitive inhibitor for hGMII with a good inhibition activity (Ki = 0.2 uM for hGMII) plus promising selectivity (40 fold for hGMII). Structural related analogues base on the structure of 2-7b-6C were also resynthesized and examined for inhibition study and the results showed 2-7b-6C was the best selective inhibitor. On the other hand, we will utilize tagged natural substrate of hLM and hGMII instead of artificial substrate plus HPLC assay for further bio-evaluation to investigate the hGMII inhibition study more thoroughly with the hope to find the lead compounds as the hGMII selective inhibitors bearing both selectivity and potency (Chapter 2)
1. H., P., Carbohydrates Containing Nitrogen or Sulfur in the “Hemiacetal” Ring. Angewandte Chemie International Edition in English, 1966. 5(5): p. 495-510.
2. Hans, P., S. Ian, and H. Kurt, Monosaccharide mit stickstoffhaltigem Ring, XIII. Synthese und Reaktionen von Keto‐piperidinosen. Chemische Berichte, 1967. 100(3): p. 802-815.
3. Asano, N., et al., Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry, 2000. 11(8): p. 1645-1680.
4. Delso, I., et al., Synthesis of d-arabinose-derived polyhydroxylated pyrrolidine, indolizidine and pyrrolizidine alkaloids. Total synthesis of hyacinthacine A2. Tetrahedron, 2010. 66(6): p. 1220-1227.
5. Johnson, C.R. and B.A. Johns, Glycomimetics: A Versatile de Novo Synthesis of β-1-C-Aryl-deoxymannojirimycin Analogues. The Journal of Organic Chemistry, 1997. 62(17): p. 6046-6050.
6. M., P.M.S., et al., Recent Advances in the Total Synthesis of Piperidine Azasugars. European Journal of Organic Chemistry, 2005. 2005(11): p. 2159-2191.
7. Pearson, W.H. and J.V. Hines, Total Syntheses of (+)-Australine and (−)-7-Epialexine. The Journal of Organic Chemistry, 2000. 65(18): p. 5785-5793.
8. Tsou, E.-L., et al., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorganic & medicinal chemistry, 2008. 16(24): p. 10198-10204.
9. Winchester, B.G., Iminosugars: from botanical curiosities to licensed drugs. Tetrahedron: Asymmetry, 2009. 20(6): p. 645-651.
10. Yang, Y., et al., Synthesis of monofluorinated isofagomine analogues and evaluation as glycosidase inhibitors. Journal of Fluorine Chemistry, 2011. 132(10): p. 838-845.
11. Horne, G., et al., Iminosugars past, present and future: medicines for tomorrow. Drug Discovery Today, 2011. 16(3): p. 107-118.
12. Gloster, T.M. and G.J. Davies, Glycosidase inhibition: assessing mimicry of the transition state. Organic & Biomolecular Chemistry, 2010. 8(2): p. 305-320.
13. Lillelund, V.H., et al., Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin. Chemical Reviews, 2002. 102(2): p. 515-554.
14. Schneider, M.J., et al., (1S,2R,8R,8aR)-1,2,8-trihydroxyoctahydroindolizine (swainsonine), an α-mannosidase inhibitor from Rhizoctonia leguminicola. Tetrahedron, 1983. 39(1): p. 29-32.
15. Elbein, A.D., et al., Swainsonine: an inhibitor of glycoprotein processing. Proceedings of the National Academy of Sciences of the United States of America, 1981. 78(12): p. 7393-7397.
16. Kaushal, G.P., et al., Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry, 1990. 29(8): p. 2168-2176.
17. Liao, Y.-F., A. Lal, and K.W. Moremen, Cloning, Expression, Purification, and Characterization of the Human Broad Specificity Lysosomal Acid α-Mannosidase. Journal of Biological Chemistry, 1996. 271(45): p. 28348-28358.
18. Pastuszak, I., et al., Purification and properties of arylmannosidases from mung bean seedlings and soybean cells. Glycobiology, 1990. 1(1): p. 71-82.
19. Shaheen, P.E., et al., Phase II study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma. Investigational New Drugs, 2005. 23(6): p. 577-581.
20. Ali, M.H., L. Hough, and A.C. Richardson, A chiral synthesis of swainsonine from D-glucose. Journal of the Chemical Society, Chemical Communications, 1984(7): p. 447-448.
21. Fleet, G.W.J., M.J. Gough, and P.W. Smith, Enantiospecific Synthesis of Swainsonine, (1S, 2R, 8R, 8aR)-1,2,8-trihydroxyoctahydroindolizine, from D-mannose. Tetrahedron Letters, 1984. 25(17): p. 1853-1856.
22. Suami, T., K.-i. Tadano, and Y. Iimura, Total Synthesis of (-)-Swainsonine, An a-Mannosidase Inhibitor Isolated From Swainsona Canescens. Chemistry Letters, 1984. 13(4): p. 513-516.
23. Adams, C.E., F.J. Walker, and K.B. Sharpless, Enantioselective synthesis of swainsonine, a trihydroxylated indolizidine alkaloid. The Journal of Organic Chemistry, 1985. 50(3): p. 420-422.
24. Bennett, R.B., et al., A short, enantioselective synthesis of (-)-swainsonine. Journal of the American Chemical Society, 1989. 111(7): p. 2580-2582.
25. Pearson, W.H. and E.J. Hembre, A Practical Synthesis of (−)-Swainsonine. The Journal of Organic Chemistry, 1996. 61(20): p. 7217-7221.
26. Johnson, W.S., et al., Simple stereoselective version of the Claisen rearrangement leading to trans-trisubstituted olefinic bonds. Synthesis of squalene. Journal of the American Chemical Society, 1970. 92(3): p. 741-743.
27. Harit, V.K. and N.G. Ramesh, Amino-functionalized iminocyclitols: synthetic glycomimetics of medicinal interest. RSC Advances, 2016. 6(111): p. 109528-109607.
28. Godskesen, M., I. Lundt, and I. Søtofte, Unusual ring contraction by substitution of 4-O-activated-pentono-1,5-lactams with cyanide. Stereospecific synthesis of 6-amino-1,4,5,6-tetradeoxy-1,4-imino-hexitols. Tetrahedron: Asymmetry, 2000. 11(2): p. 567-579.
29. J., F.G.W., et al., Synthesis of 2-Acetamido-1,5-imino-1,2,5-trideoxy-D-mannitol and of 2-Acetamido-1,5-imino-1,2,5-trideoxy-D-glucitol, a Potent and Specific Inhibitor of a Number of β-N-Acetylglucosaminidases. Chemistry Letters, 1986. 15(7): p. 1051-1054.
30. Lohse, A., et al., Synthesis of 3-substituted isofagomine analogues using an unusual syn hydrogenation reaction. Journal of the Chemical Society, Perkin Transactions 1, 2000(5): p. 659-665.
31. Winkler, D.A., Molecular Modeling Studies of “Flap Up” Mannosyl Cation Mimics. Journal of Medicinal Chemistry, 1996. 39(21): p. 4332-4334.
32. Liu, P.S., M.S. Kang, and P.S. Sunkara, A potent inhibitor of β-N-acetylglucosaminidases: 6-acetamido-6-deoxycastanospermine. Tetrahedron Letters, 1991. 32(6): p. 719-720.
33. Cheng, W.-C., et al., Bioevaluation of sixteen ADMDP stereoisomers toward alpha-galactosidase A: Development of a new pharmacological chaperone for the treatment of Fabry disease and potential enhancement of enzyme replacement therapy efficiency. European Journal of Medicinal Chemistry, 2016. 123: p. 14-20.
34. Wei‐Chieh, C., et al., Synthesis and Inhibition Study of Bicyclic Iminosugar‐Based Alkaloids, Scaffolds, and Libraries towards Glucosidase. Israel Journal of Chemistry, 2015. 55(3‐4): p. 403-411.
35. Kawatkar, S.P., et al., Structural Basis of the Inhibition of Golgi α-Mannosidase II by Mannostatin A and the Role of the Thiomethyl Moiety in Ligand−Protein Interactions. Journal of the American Chemical Society, 2006. 128(25): p. 8310-8319.
36. M.H., v.d.E.J., K.D. A., and R.D. R., Structure of Golgi α‐mannosidase II: a target for inhibition of growth and metastasis of cancer cells. The EMBO Journal, 2001. 20(12): p. 3008-3017.
37. Shah, N., D.A. Kuntz, and D.R. Rose, Comparison of Kifunensine and 1-Deoxymannojirimycin Binding to Class I and II α-Mannosidases Demonstrates Different Saccharide Distortions in Inverting and Retaining Catalytic Mechanisms. Biochemistry, 2003. 42(47): p. 13812-13816.
38. Cheng, W.-C., et al., Rapid preparation of (3R,4S,5R) polyhydroxylated pyrrolidine-based libraries to discover a pharmacological chaperone for treatment of Fabry disease. European Journal of Medicinal Chemistry, 2017. 126: p. 1-6.
39. Lin, C.-K., et al., Synthesis of novel polyhydroxylated pyrrolidine-triazole/-isoxazole hybrid molecules. Organic & Biomolecular Chemistry, 2015. 13(7): p. 2100-2107.
40. Pi‐Hui, L., et al., Novel Five‐Membered Iminocyclitol Derivatives as Selective and Potent Glycosidase Inhibitors: New Structures for Antivirals and Osteoarthritis. ChemBioChem, 2006. 7(1): p. 165-173.
41. Tsou, E.-L., et al., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron, 2009. 65(1): p. 93-100.
42. Thompson, D.K., C.N. Hubert, and R.H. Wightman, Hydroxylated pyrrolidines. Synthesis of 1,4-dideoxy-1,4-imino-L-lyxitol, 1,4,5-trideoxy-1,4-imino-D- and -L-lyxo-hexitol, 2,3,6-trideoxy-3,6-imino-D-glycero-L-altro- and -D-glycero-L-galacto-octitols, and of a chiral potential precursor of carbapenem systems. Tetrahedron, 1993. 49(18): p. 3827-3840.
43. Ikota, N. and A. Hanaki, SYNTHESIS OF (-) -SWAINSONINE AND OPTICALLY ACTIVE 3, 4-DIHYDROXY-2-HYDROXYMETHYLPYRROLIDINES. CHEMICAL & PHARMACEUTICAL BULLETIN, 1987. 35(5): p. 2140-2143.
44. Ikota, N. and A. Hanaki, Synthesis of (-)-Swainsonine and (-)-8-epi-Swainsonine from (S)- and (R)-Glutamic Acid Derivatives. CHEMICAL & PHARMACEUTICAL BULLETIN, 1990. 38(10): p. 2712-2718.
45. White, J.D. and J.D. Hansen, Total Synthesis of (−)-7-Epicylindrospermopsin, a Toxic Metabolite of the Freshwater Cyanobacterium Aphanizomenon ovalisporum, and Assignment of Its Absolute Configuration. The Journal of Organic Chemistry, 2005. 70(6): p. 1963-1977.
46. Martínez-Bailén, M., et al., Tuning of β-glucosidase and α-galactosidase inhibition by generation and in situ screening of a library of pyrrolidine-triazole hybrid molecules. European Journal of Medicinal Chemistry, 2017. 138: p. 532-542.
47. Singh, P. and G. Panda, Intramolecular 5-endo-trig aminopalladation of [small beta]-hydroxy-[gamma]-alkenylamine: efficient route to a pyrrolidine ring and its application for the synthesis of (-)-8,8a-di-epi-swainsonine. RSC Advances, 2014. 4(5): p. 2161-2166.
48. Yu, W., et al., Improved Procedure for the Oxidative Cleavage of Olefins by OsO4−NaIO4. Organic Letters, 2004. 6(19): p. 3217-3219.
49. Guillaume, M. and Y. Lang, Further improvements of the dibutyl tin oxide-catalyzed regioselective diol tosylation. Tetrahedron Letters, 2010. 51(4): p. 579-582.
50. Martinelli, M.J., et al., Dibutyltin Oxide Catalyzed Selective Sulfonylation of α-Chelatable Primary Alcohols. Organic Letters, 1999. 1(3): p. 447-450.
51. Setoi, H., H. Takeno, and M. Hashimoto, Enantiospecific total synthesis of (-)-swainsonine: new applications of sodium borohydride reduction. The Journal of Organic Chemistry, 1985. 50(20): p. 3948-3950.
52. Setoi, H., H. Takeno, and M. Hashimoto, A Novel Skeletal Rearrangement of an Indolizidine Alkaloid, Swainsonine via an Aziridinium Intermediate. HETEROCYCLES, 1986. 24: p. 1261-1264.
53. Merino, P., et al., Stereoselective grignard reactions to α-amino nitrones. Synthesis of optically active α-aminohydroxylamines and 1,2-diamines. Tetrahedron: Asymmetry, 1997. 8(14): p. 2381-2401.
54. Merino, P., et al., Totally stereocontrolled synthesis of α,β-diamino acids by addition of Grignard reagents to nitrones derived from l-serine. Tetrahedron: Asymmetry, 1998. 9(4): p. 629-646.
55. Goss, P.E., et al., Inhibitors of carbohydrate processing: A new class of anticancer agents. Clinical Cancer Research, 1995. 1(9): p. 935-944.
56. Howard, S., et al., Human Lysosomal and Jack Bean α-Mannosidases Are Retaining Glycosidases. Biochemical and Biophysical Research Communications, 1997. 238(3): p. 896-898.
57. Herscovics, A., Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1999. 1473(1): p. 96-107.
58. Tulsiani, D.R.P., T.M. Harris, and O. Touster, Swainsonine Inhibits the Biosynthesis of Complex Glycoproteins by Inhibition of Golgi Mannosidase II. J. Biol. Chem, 1982. 257: p. 7936-7939.
59. Michalski, J.-C. and A. Klein, Glycoprotein lysosomal storage disorders: α- and β-mannosidosis, fucosidosis and α-N-acetylgalactosaminidase deficiency. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1999. 1455(2): p. 69-84.
60. Cenci di Bello, I., P. Dorling, and B. Winchester, The storage products in genetic and swainsonine-induced human mannosidosis. Biochemical Journal, 1983. 215(3): p. 693-696.
61. Pearson, W.H. and L. Guo, Synthesis and mannosidase inhibitory activity of 3-benzyloxymethyl analogs of swainsonine. Tetrahedron Letters, 2001. 42(47): p. 8267-8271.
62. Hembre, E.J. and W.H. Pearson, Synthesis of the novel mannosidase inhibitors (3R)- and (3S)-3-(hydroxymethyl)swainsonine. Tetrahedron, 1997. 53(32): p. 11021-11032.
63. Pearson, W.H. and E.J. Hembre, Synthesis and mannosidase inhibitory activity of 6- and 7-substituted analogs of swainsonine. Tetrahedron Letters, 2001. 42(47): p. 8273-8276.
64. Fujita, T., et al., Synthesis of the New Mannosidase Inhibitors, Diversity-Oriented 5-Substituted Swainsonine Analogues, via Stereoselective Mannich Reaction. Organic Letters, 2004. 6(5): p. 827-830.
65. A., K.D., et al., Structural Investigation of the Binding of 5‐Substituted Swainsonine Analogues to Golgi α‐Mannosidase II. ChemBioChem, 2010. 11(5): p. 673-680.
66. R., C.T.J., et al., From Natural Product‐Inspired Pyrrolidine Scaffolds to the Development of New Human Golgi α‐Mannosidase II Inhibitors. Chemistry – An Asian Journal, 2013. 8(11): p. 2600-2604.
67. Zhu, J.-S., et al., Synthesis of Eight Stereoisomers of Pochonicine: Nanomolar Inhibition of β-N-Acetylhexosaminidases. The Journal of Organic Chemistry, 2013. 78(20): p. 10298-10309.
68. Jinkyung, I., et al., Divergent Total Synthesis of the Tricyclic Marine Alkaloids Lepadiformine, Fasicularin, and Isomers of Polycitorols by Reagent‐Controlled Diastereoselective Reductive Amination. Chemistry – A European Journal, 2014. 20(52): p. 17433-17442.
69. Curran, T.P., et al., Loss of the tert-butyloxycarbonyl (Boc) protecting group under basic conditions. Tetrahedron Letters, 1994. 35(30): p. 5409-5412.
70. Stead, D., P. O'Brien, and A. Sanderson, A New Sparteine Surrogate for Asymmetric Deprotonation of N-Boc Pyrrolidine. Organic Letters, 2008. 10(7): p. 1409-1412.
71. Nigama, S.C., et al., Selective Removal of the Tert-Butoxycarbonyl Group from Secondary Amines: ZnBr2 as the Deprotecting Reagent. Synthetic Communications, 1989. 19(18): p. 3139-3142.
72. Brik, A., C.-Y. Wu, and C.-H. Wong, Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery. Organic & Biomolecular Chemistry, 2006. 4(8): p. 1446-1457.
73. Chung‐Yi, W., et al., Rapid Diversity‐Oriented Synthesis in Microtiter Plates for In Situ Screening: Discovery of Potent and Selective α‐Fucosidase Inhibitors. Angewandte Chemie International Edition, 2003. 42(38): p. 4661-4664.
74. D., B.M., et al., Rapid Discovery of Potent Sulfotransferase Inhibitors by Diversity‐Oriented Reaction in Microplates Followed by in situ Screening. ChemBioChem, 2004. 5(6): p. 811-819.