簡易檢索 / 詳目顯示

研究生: 李柟葶
Li, Nan-Ting
論文名稱: HPV-16E7 與 DDB1 蛋白間的交互作用與功能
The interaction and function between HPV-16E7 and DDB1
指導教授: 張虹書
Chang, Hung-Shu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 人類乳突瘤病毒蛋白質交互作用
外文關鍵詞: DDB1, HPV, HPV16, E7, protein-protein interaction
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人的研究發現高危險性類型人類乳突瘤病毒 (HPV) 主要含有兩個誘發細胞癌化的致癌蛋白質,分別為 E6 和 E7 蛋白質,當各自將 E6 與 E7 表現於初代細胞 (primary cell) 時,會導致細胞發生轉型。在細胞癌化的過程中,E6 及 E7 會分別影響宿主細胞中的 p53 及 pRB 蛋白質表現,藉此干擾宿主細胞內之生長週期與恆定,此現象已被廣泛探討。然前人的研究指出 E7 發生突變時,若 E7 僅與 pRB 結合,並不足以造成細胞發生轉型,此結果說明除與 pRB 的結合之外,與宿主其它蛋白質之交互作用亦是 E7 導致細胞轉型的成因。
    本研究室前人研究中,已發現並陸續呈述 HPV-16E7 或 -18E7 會調控細胞的其它蛋白質,例如:c-myc 、USP11、DYRK1A 和 TIEG1 (Klf10) 等,而在酵母菌雙雜合系統篩選結果中,初步發現 DDB1 與 HPV-16E7 之間會形成複合體。目前研究指出 DDB1 為 DDB (DNA damage-binding protein) 異型二聚複合體的一個亞單位,其在核苷酸切除修復機制中扮演重要的角色。本論文結果發現 HPV-16E7 的確會與 DDB1 結合,並在胞外實驗中 (in vitro) 藉由進行序列刪除型的 HPV-16E7 蛋白質 GST pull down,發現 HPV-16E7 是以 CRI 及 CRIII 鋅指結構域與 DDB1 結合。再者,於胞內實驗中 (in vivo) 以共免疫沈澱法亦證實 HPV-16E7 的確會與 DDB1 具交互作用;為確認 HPV-16E7 存在是否對 DDB1 的表現量與穩定度具影響性,分別以 H1299 細胞株及 MCF7 細胞株進行研究,結果發現當將 HPV-16E7 分別轉染兩細胞株時,皆會導致內生性 DDB1 蛋白質量減少,另添加轉譯抑制藥物環己醯亞胺 (Cycloheximide) 觀測其蛋白質的半衰期,亦證實有此現象發生。
    由於 DDB1 參與 DNA 修復及其為 E3 泛素黏酶辨識受質,因此參與許多維持細胞恆定所須蛋白質的降解反應,綜合由過去文獻顯示,許多病毒的致癌蛋白會與宿主的 DDB1 E3泛素黏酶進行結合,藉以調控宿主其它蛋白質的表現,本研究新發現 DDB1 為一可被 HPV-16E7 所調控的胞內蛋白質,而其可能藉由調控此蛋白質造成被感染細胞發生轉型作用。

    The functions of two viral onco-proteins, E6 and E7, from high-risk human papillomavirus (HPV), are reflected in many of the cancer signaling. The expression of E6 or E7 alone in primary cells has been known resulting the cells transform. The effects of E6 on p53 and E7 on pRb during carcinogenesis have been extensively investigated which regulate cells growth and homeostasis. However, a detailed mutagenesis study on E7 also revealed that binding to pRb alone is insufficient to cause cells transformation. This result suggests in addition to binding to pRb, other protein-protein interactions are necessary for the E7-mediated transformation.
    In our earlier studies, we have been characterized and showed some cellular proteins that it is modulated in HPV-16E7 or -18E7 presented such as c-myc, USP11, DYRK1A and TIEG1 (Klf10) etc.. One of other candidates from the yeast two-hybrid assay, we first found that the DDB1 interacts and forms a specific complex with HPV-16E7. DDB1 is one subunit of DNA damage-binding heterodimer protein complex which play an important functions in nucleotide excision repair. In this thesis, we have demonstrated that E7 does indeed interact with DDB1 and a sequential deletion analysis of E7 maps the DDB1 interaction site to the CRI and CRIII zinc finger domains by GST pull down in vitro. Moreover, a co-immunoprecipitation assay was also adopted to confirm this interaction in vivo. Furthermore, in order to analyze whether the presence of HPV-16E7 affects expression and stability of DDB1 protein in H1299 and MCF7 cells respectively. This result indicated that transfected HPV-16E7 in both cells cause the protein reduction of endogenous DDB1. In the meantime, a protein-half life assay verified this regulation when added translation inhibitor-cycloheximide in culture medium.
    Due to the DDB1 protein involved in DNA repair as well as a subunit of E3 ubiquitin ligase recognized substrate, and further involved in many cellular proteins degradation. Taken together, this study found that HPV-16E7 associated with another intracellular protein and probably through the regulation of this protein to cause the transformation of infected cells.

    中文摘要 I Abstract III 謝誌 V 目錄 VI 圖表目錄 VIII 縮寫檢索表 X 壹、 序論 1 一、 人類乳突瘤病毒 (human papillomavirus) 感染所造成之疾病與其生活史 1 二、 人類乳突瘤病毒之致癌蛋白質:E6 和 E7 3 三、 與E7 相關之蛋白質及癌症之發生 6 四、 DDB1 (DNA damage-binding protein 1) 蛋白質之介紹 9 五、 實驗目的 13 貳、 實驗設計 14 參、 材料與方法 15 一、 細胞培養 15 二、 載體的構築 (Construction) 17 三、 酵母菌雙雜合系統 26 四、 利用大腸桿菌 (E. coli) 誘導融合蛋白質的表現 26 五、 穀胱甘肽硫轉移酶 (glutathione-S-transferase, GST) 融合蛋白質的純化與定量 29 六、 利用體外轉錄轉譯系統放射線標定和表現融合蛋白質 33 七、 GST 捉取分析法 (GST-pull down assay) 34 八、 轉染 (Transfection) 質體至細胞中 37 九、 蛋白質淬取 38 十、 蛋白質濃度之定量 39 十一、 十二烷基硫酸鈉-聚丙烯醯胺凝膠 (SDS-PAGE) 電泳 39 十二、 轉漬 (Transfer) 與西方墨點法 (Western Blot) 41 十三、 共同免疫沉澱法 (Co-immunoprectiptation) 43 十四、 環己醯亞胺 (Cycloheximide) 處理 45 肆、 實驗結果 46 一、 利用酵母菌雙雜合系統發現 HPV-16E7 與 DDB1 具結合能力。 46 二、 藉由 GST pull down 分析 HPV-16E7 與 DDB1 之交互作用區域。 47 三、 利用共免疫沈澱法偵測細胞中 HPV-16E7 與 DDB1 之交互作用。 50 四、 細胞內 HPV-16E7 與 DDB1 之交互作用對 DDB1 表現量與穩定度的影響。 51 伍、 討論 55 一、 探討實驗用之細胞株與 HPV 之關係 55 二、 探討 GST-DDB1 融合蛋白質在大腸桿菌的表達系統 55 三、 分析 HPV-16E7 與 DDB1 之交互作用 58 四、 分析 HPV-16E7 與 DDB1 交互作用之區域 58 五、 分析 HPV-16E7 對 DDB1 表現量與穩定度之影響 60 六、 探討 HPV-E7 與 DDB1 交互作用後其它可能之功能 61 陸、 參考文獻 64 柒、 圖 78 捌、 附錄 97

    Abulaiti, A., A. J. Fikaris, et al. (2006). "Ras induces chromosome instability and abrogation of the DNA damage response." Cancer Research 66(21): 10505-10512.
    Ahn, J., T. Vu, et al. (2010). "HIV-1 Vpr loads uracil DNA glycosylase-2 onto DCAF1, a substrate recognition subunit of a cullin 4A-RING E3 ubiquitin ligase for proteasome-dependent degradation." Journal of Biological Chemistry 285(48): 37333-37341.
    Andrejeva, J., E. Poole, et al. (2002). "The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5." Journal of Virology 76(22): 11379-11386.
    Angers, S., T. Li, et al. (2006). "Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery." Nature 443(7111): 590-593.
    Ayinde, D., A. Bergamaschi, et al. (2009). "The HIV-2 Vpx protein usurps the Cul4A-DDB1-DCAF1 ubiquitin ligase to overcome a post-entry block in macrophage infection." Retrovirology 6(Suppl 2).
    Balsitis, S., F. Dick, et al. (2006). "Critical roles for non-pRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis." Cancer Research 66(19): 9393-9400.
    Balsitis, S. J., J. Sage, et al. (2003). "Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo." Molecular and Cellular Biology 23(24): 9094-9103.
    Band, V., J. A. De Caprio, et al. (1991). "Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells." Journal of Virology 65(12): 6671-6676.
    Barbosa, M. S., D. R. Lowy, et al. (1989). "Papillomavirus polypeptides E6 and E7 are zinc-binding proteins." Journal of Virology 63(3): 1404-1407.
    Barnard, P. and N. A. McMillan (1999). "The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha." Virology 259(2): 305-313.
    Barnes, H. J., M. P. Arlotto, et al. (1991). "Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli." Proceedings of the National Academy of Sciences of the United States of America 88(13): 5597-5601.
    Barry, M. and K. Fruh (2006). "Viral modulators of cullin RING ubiquitin ligases: culling the host defense." Science's STKE 2006(335): pe21.
    Bedell, M. A., J. B. Hudson, et al. (1991). "Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation." Journal of Virology 65(5): 2254-2260.
    Belzile, J. P., G. Duisit, et al. (2007). "HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase." PLoS Pathogens 3(7).
    Belzile, J. P., J. Richard, et al. (2010). "HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest." Journal of Virology 84(7): 3320-3330.
    Bergametti, F., J. Bianchi, et al. (2002). "Interaction of hepatitis B virus X protein with damaged DNA-binding protein p127: structural analysis and identification of antagonists." Journal of Biomedical Science 9(6): 706-715.
    Bondar, T., A. Kalinina, et al. (2006). "Cul4A and DDB1 associate with Skp2 to target p27Kip1 for proteolysis involving the COP9 signalosome." Molecular and Cellular Biology 26(7): 2531-2539.
    Bontron, S., N. Lin-Marq, et al. (2002). "Hepatitis B virus X protein associated with UV-DDB1 induces cell death in the nucleus and is functionally antagonized by UV-DDB2." Journal of Biological Chemistry 277(41): 38847-38854.
    Bosch, F. X. and S. de Sanjose (2003). "Chapter 1: Human papillomavirus and cervical cancer--burden and assessment of causality." Journal of the National Cancer Institute. Monographs.(31): 3-13.
    Caldeira, S., E. M. de Villiers, et al. (2000). "Human papillomavirus E7 proteins stimulate proliferation independently of their ability to associate with retinoblastoma protein." Oncogene 19(6): 821-826.
    Casey, L., X. Wen, et al. (2010). "The functions of the HIV1 protein Vpr and its action through the DCAF1•DDB1•Cullin4 ubiquitin ligase." Cytokine 51(1): 1-9.
    Chang, H. S., C. H. Lin, et al. (2007). "Increased expression of Dyrk1a in HPV16 immortalized keratinocytes enable evasion of apoptosis." International Journal of Cancer 120(11): 2377-2385.
    Chen, L. C., S. Manjeshwar, et al. (1998). "The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers." Cancer Research 58(16): 3677-3683.
    Chen, X., Y. Zhang, et al. (2001). "UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation." Journal of Biological Chemistry 276(51): 48175-48182.
    Choi, S. H., J. B. Wright, et al. (2010). "Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells." Genes & Development 24(12): 1236-1241.
    Chu, G. and E. Chang (1988). "Xeroderma Pigmentosum Group E Cells Lack a Nuclear Factor That Binds to Damaged DNA." Science 242(4878): 564-567.
    Ciechanover, A. and R. Ben-Saadon (2004). "N-terminal ubiquitination: more protein substrates join in." Trends in cell biology 14(3): 103-106.
    Ciechomska, I., B. Pyrzynska, et al. (2003). "Inhibition of Akt kinase signalling and activation of Forkhead are indispensable for upregulation of FasL expression in apoptosis of glioma cells." Oncogene 22(48): 7617-7627.
    Cobrinik, D., S. F. Dowdy, et al. (1992). "The retinoblastoma protein and the regulation of cell cycling." Trends in Biochemical Sciences 17(8): 312-315.
    Cole, S. T. and O. Danos (1987). "Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products." Journal of molecular biology 193(4): 599-608.
    Cone, R. W., A. C. Minson, et al. (1992). "Conservation of HPV-16 E6/E7 ORF sequences in a cervical carcinoma." Journal of medical virology 37(2): 99-107.
    Cooper, B., N. Brimer, et al. (2007). "Human papillomavirus E6 regulates the cytoskeleton dynamics of keratinocytes through targeted degradation of p53." Journal of Virology 81(22): 12675-12679.
    Datto, M. B., Y. Li, et al. (1995). "Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism." Proceedings of the National Academy of Sciences of the United States of America 92(12): 5545-5549.
    DeMasi, J., M. C. Chao, et al. (2007). "Bovine papillomavirus E7 oncoprotein inhibits anoikis." Journal of Virology 81(17): 9419-9425.
    Dyson, N. (1998). "The regulation of E2F by pRB-family proteins." Genes & Development 12(15): 2245-2262.
    EMBL, E. M. B. L. (2009 - 2010). "Protein Expression E. coli : Improving Protein Solubility." http://www.embl.de/pepcore/pepcore_services/protein_expression/ecoli/optimisation_expression_levels/.
    EMBL, E. M. B. L. (2009 - 2010). "Protein Expression E. coli : Optimisation of Expression Levels." http://www.embl.de/pepcore/pepcore_services/protein_expression/ecoli/optimisation_expression_levels/.
    Fehrmann, F. and L. A. Laimins (2003). "Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation." Oncogene 22(33): 5201-5207.
    Figge, J., T. Webster, et al. (1988). "Prediction of similar transforming regions in simian virus 40 large T, adenovirus E1A, and myc oncoproteins." Journal of Virology 62(5): 1814-1818.
    Fitch, M. E., S. Nakajima, et al. (2003). "In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product." Journal of Biological Chemistry 278(47): 46906-46910.
    Frazer, I. H. (2004). "Prevention of cervical cancer through papillomavirus vaccination." Nature Reviews Immunology 4(1): 46-55.
    Funk, J. O., S. Waga, et al. (1997). "Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein." Genes & Development 11(16): 2090-2100.
    Gammoh, N., E. Isaacson, et al. (2009). "Inhibition of HPV-16 E7 oncogenic activity by HPV-16 E2." Oncogene 28(23): 2299-2304.
    Ganguly, N. and S. P. Parihar (2009). "Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis." Journal of biosciences 34(1): 113-123.
    Ganoth, D., G. Bornstein, et al. (2001). "The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27." Nature cell biology 3(3): 321-324.
    Garnett, T. O., M. Filippova, et al. (2006). "Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis." Cell death and differentiation 13(11): 1915-1926.
    Grm, H. S., P. Massimi, et al. (2005). "Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein." Oncogene 24(33): 5149-5164.
    Groisman, R., J. Polanowska, et al. (2003). "The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes Is Differentially Regulated by the COP9 Signalosome in Response to DNA Damage." Cell 113(3): 357-367.
    Grossman, S. R. and L. A. Laimins (1989). "E6 protein of human papillomavirus type 18 binds zinc." Oncogene 4(9): 1089-1093.
    Grossman, S. R., R. Mora, et al. (1989). "Intracellular localization and DNA-binding properties of human papillomavirus type 18 E6 protein expressed with a baculovirus vector." Journal of Virology 63(1): 366-374.
    Guerrero-Santoro, J., M. G. Kapetanaki, et al. (2008). "The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A." Cancer Research 68(13): 5014-5022.
    Gulliver, G. A., R. L. Herber, et al. (1997). "Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice." Journal of Virology 71(8): 5905-5914.
    Halbert, C. L., G. W. Demers, et al. (1991). "The E7 Gene of Human Papillomavirus Type-16 Is Sufficient for Immortalization of Human Epithelial-Cells." Journal of Virology 65(1): 473-478.
    Haller, O., G. Kochs, et al. (2006). "The interferon response circuit: induction and suppression by pathogenic viruses." Virology 344(1): 119-130.
    Han, J. H., Y. S. Choi, et al. (2010). "Codon optimization enhances protein expression of human peptide deformylase in E. coli." Protein expression and purification 70(2): 224-230.
    Havre, P. A., J. Yuan, et al. (1995). "p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells." Cancer Research 55(19): 4420-4424.
    He, Y. J., C. M. McCall, et al. (2006). "DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4–ROC1 ubiquitin ligases." Genes & Development 20(21): 2949-2954.
    Hebner, C., M. Beglin, et al. (2007). "Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation." Journal of Virology 81(23): 12740-12747.
    Hebner, C. M. and L. A. Laimins (2006). "Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity." Reviews in medical virology 16(2): 83-97.
    Hefferan, T. E., G. G. Reinholz, et al. (2000). "Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-beta action in human osteoblast cells." Journal of Biological Chemistry 275(27): 20255-20259.
    Heng, B., W. K. Glenn, et al. (2009). "Human papilloma virus is associated with breast cancer." British Journal of Cancer 101(8): 1345-1350.
    Higa, L. A., D. Banks, et al. (2006). "L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage." Cell Cycle 5(15): 1675-1680.
    Higa, L. A. and H. Zhang (2007). "Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy." Cell division 2(5).
    Hori, T., F. Osaka, et al. (1999). "Covalent modification of all members of human cullin family proteins by NEDD8." Oncogene 18(48): 6829-6834.
    Horvath, C. A. J., G. A. V. Boulet, et al. (2010). "Mechanisms of cell entry by human papillomaviruses: an overview." Virology Journal 7.
    Horvath, C. M. (2004). "Weapons of STAT destruction. Interferon evasion by paramyxovirus V protein." European Journal of Biochemistry / FEBS 271(23-24): 4621-4628.
    Hu, J., C. M. McCall, et al. (2004). "Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage." Nature cell biology 6(10): 1003-1009.
    Hu, J., S. Zacharek, et al. (2008). "WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase." Genes & Development 22(7): 866-871.
    Huang, J. and J. Chen (2008). "VprBP targets Merlin to the Roc1-Cul4A-DDB1 E3 ligase complex for degradation." Oncogene 27(29): 4056-4064.
    Huang, T. T. and A. D. D'Andrea (2006). "Regulation of DNA repair by ubiquitylation." Nature Reviews Molecular Cell Biology 7(5): 323-334.
    Huh, K., X. Zhou, et al. (2007). "Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor." Journal of Virology 81(18): 9737-9747.
    Huh, K. W., J. DeMasi, et al. (2005). "Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600." Proceedings of the National Academy of Sciences of the United States of America 102(32): 11492-11497.
    Iovino, F., L. Lentini, et al. (2006). "RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts." Molecular Cancer 5: 38.
    Jacks, T., A. Fazeli, et al. (1992). "Effects of an Rb mutation in the mouse." Nature 359(6393): 295-300.
    Jackson, S. and Y. Xiong (2009). "CRL4s: the CUL4-RING E3 ubiquitin ligases." Trends in Biochemical Sciences 34(11): 562-570.
    Jiang, Y., X. Wang, et al. (2010). "INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway." Proceedings of the National Academy of Sciences of the United States of America 107(40): 17274-17279.
    Jones, D. L., R. M. Alani, et al. (1997). "The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2." Genes & Development 11(16): 2101-2111.
    Jones, D. L., D. A. Thompson, et al. (1997). "Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis." Virology 239(1): 97-107.
    Kamio, M., T. Yoshida, et al. (2004). "SOCS1 [corrected] inhibits HPV-E7-mediated transformation by inducing degradation of E7 protein." Oncogene 23(17): 3107-3115.
    Kapetanaki, M. G., J. Guerrero-Santoro, et al. (2006). "The DDB1-CUL4A(DDB2) ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites." Proceedings of the National Academy of Sciences of the United States of America 103(8): 2588-2593.
    Kapetanaki, M. G., J. Guerrero-Santoro, et al. (2006). "The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites." Proc Natl Acad Sci U S A 103(8): 2588-2593.
    Keeney, S., G. J. Chang, et al. (1993). "Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E." Journal of Biological Chemistry 268(28): 21293-21300.
    Kudla, G., A. W. Murray, et al. (2009). "Coding-sequence determinants of gene expression in Escherichia coli." Science 324(5924): 255-258.
    Le Rouzic, E., M. Morel, et al. (2008). "Assembly with the Cul4A-DDB1DCAF1 ubiquitin ligase protects HIV-1 Vpr from proteasomal degradation." Journal of Biological Chemistry 283(31): 21686-21692.
    Lee, J. and P. Zhou (2007). "DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase." Molecular cell 26(6): 775-780.
    Lee, T. H., S. J. Elledge, et al. (1995). "Hepatitis B virus X protein interacts with a probable cellular DNA repair protein." Journal of Virology 69(2): 1107-1114.
    Leung-Pineda, V., J. Huh, et al. (2009). "DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress." Cancer Research 69(6): 2630-2637.
    Leupin, O., S. Bontron, et al. (2003). "Hepatitis B virus X protein and simian virus 5 V protein exhibit similar UV-DDB1 binding properties to mediate distinct activities." Journal of Virology 77(11): 6274-6283.
    Li, J., T. Uchida, et al. (2006). "Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA." Journal of Biological Chemistry 281(35): 25551-25559.
    Li, T., X. Chen, et al. (2006). "Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase." Cell 124(1): 105-117.
    Li, T., E. I. Robert, et al. (2010). "A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery." Nature Structural & Molecular Biology 17(1): 105-111.
    Li, X. and P. Coffino (1996). "High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation." Journal of Virology 70(7): 4509-4516.
    Li, X., Q. Zhao, et al. (2003). "The SCFSkp2 Ubiquitin Ligase Complex Interacts with the Human Replication Licensing Factor Cdt1 and Regulates Cdt1 Degradation." Journal of Biological Chemistry 278(33): 30854-30858.
    Li, Y. J., Y. C. Tsai, et al. (2009). "Human papilloma virus and female lung adenocarcinoma." Seminars in Oncology 36(6): 542-552.
    Liang, Y.-J., H.-S. Chang, et al. (2008). "DYRK1A stabilizes HPV16E7 oncoprotein through phosphorylation of the threonine 5 and threonine 7 residues." The International Journal of Biochemistry & Cell Biology 40(11): 2431-2441.
    Lin, C. H., H. S. Chang, et al. (2008). "USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity." Journal of Biological Chemistry 283(23): 15681-15688.
    Lin, G. Y., R. G. Paterson, et al. (1998). "The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein." Virology 249(1): 189-200.
    Liu, E., X. Li, et al. (2004). "Cyclin-dependent Kinases Phosphorylate Human Cdt1 and Induce Its Degradation." Journal of Biological Chemistry 279(17): 17283-17288.
    Liu, S., Y. Tian, et al. (2010). "A C-terminal hydrophobic, solvent-protected core and a flexible N-terminus are potentially required for human papillomavirus 18 E7 protein functionality." Biochimie 92(7): 901-908.
    Liu, W., A. F. Nichols, et al. (2000). "Nuclear transport of human DDB protein induced by ultraviolet light." Journal of Biological Chemistry 275(28): 21429-21434.
    Liu, X., A. Clements, et al. (2006). "Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor." Journal of Biological Chemistry 281(1): 578-586.
    Longworth, M. S. and L. A. Laimins (2004). "Pathogenesis of human papillomaviruses in differentiating epithelia." Microbiology and Molecular Biology Reviews 68(2): 362-372.
    Lorincz, A. T., R. Reid, et al. (1992). "Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types." Obstetrics & Gynecology 79(3): 328-337.
    Lv, X. B., F. Y. Xie, et al. (2010). "Damaged DNA-binding Protein 1 (DDB1) Interacts with Cdh1 and Modulates the Function of APC/CCdh1." Journal of Biological Chemistry 285(24): 18234-18240.
    Martinez, E., V. B. Palhan, et al. (2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo." Molecular and Cellular Biology 21(20): 6782-6795.
    McCall, C. M., P. L. Miliani de Marval, et al. (2008). "Human immunodeficiency virus type 1 Vpr-binding protein VprBP, a WD40 protein associated with the DDB1-CUL4 E3 ubiquitin ligase, is essential for DNA replication and embryonic development." Molecular and Cellular Biology 28(18): 5621-5633.
    McIntyre, M. C., M. N. Ruesch, et al. (1996). "Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107." Virology 215(1): 73-82.
    McLaughlin-Drubin, M. E. and K. Munger (2009). "The human papillomavirus E7 oncoprotein." Virology 384(2): 335-344.
    Moody, C. A. and L. A. Laimins (2010). "Human papillomavirus oncoproteins: pathways to transformation." Nature Reviews Cancer 10(8): 550-560.
    Morimoto, M., T. Nishida, et al. (2000). "Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1)." Biochemical and Biophysical Research Communications 270(3): 1093-1096.
    Motoyama, S., C. A. Ladines-Llave, et al. (2004). "The role of human papilloma virus in the molecular biology of cervical carcinogenesis." The Kobe Journal of Medical Sciences 50(1-2): 9-19.
    Munger, K., A. Baldwin, et al. (2004). "Mechanisms of human papillomavirus-induced oncogenesis." Journal of Virology 78(21): 11451-11460.
    Munger, K. and P. M. Howley (2002). "Human papillomavirus immortalization and transformation functions." Virus Research 89(2): 213-228.
    Munger, K., W. C. Phelps, et al. (1989). "The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes." Journal of Virology 63(10): 4417-4421.
    Munoz, N., F. X. Bosch, et al. (2003). "Epidemiologic classification of human papillomavirus types associated with cervical cancer." The New England Journal of Medicine 348(6): 518-527.
    N, L.-M., B. S, et al. (2001). "Hepatitis B virus X protein interferes with cell viability through interaction with the p127-kDa UV-damaged DNA-binding protein." Virology 287(2): 266-274.
    Narisawa-Saito, M. and T. Kiyono (2007). "Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins." Cancer Science 98(10): 1505-1511.
    Nguyen, C. L. and K. Munger (2008). "Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes." Virology 380(1): 21-25.
    Nishitani, H., N. Sugimoto, et al. (2006). "Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis." The EMBO Journal 25(5): 1126-1136.
    O'Connell, B. C. and J. W. Harper (2007). "Ubiquitin proteasome system (UPS): what can chromatin do for you?" Current Opinion in Cell Biology 19(2): 206-214.
    Oh, K.-J., A. Kalinina, et al. (2004). "The Papillomavirus E7 Oncoprotein Is Ubiquitinated by UbcH7 and Cullin 1- and Skp2-Containing E3 Ligase." Journal of Virology 78(10): 5338-5346.
    Oh, K. J., A. Kalinina, et al. (2004). "The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase." Journal of Virology 78(10): 5338-5346.
    Ohlenschlager, O., T. Seiboth, et al. (2006). "Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7." Oncogene 25(44): 5953-5959.
    Parkin, D. M. (2006). "The global health burden of infection-associated cancers in the year 2002." International Journal of Cancer 118(12): 3030-3044.
    Patel, D., A. Incassati, et al. (2004). "Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins." Cancer Research 64(4): 1299-1306.
    Patrick, D. R., A. Oliff, et al. (1994). "Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein." Journal of Biological Chemistry 269(9): 6842-6850.
    Petroski, M. D. and R. J. Deshaies (2005). "Function and regulation of cullin-RING ubiquitin ligases." Nature Reviews Molecular Cell Biology 6(1): 9-20.
    Pett, M. and N. Coleman (2007). "Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis?" The Journal of Pathology 212(4): 356-367.
    Phelps, W. C., K. Munger, et al. (1992). "Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein." Journal of Virology 66(4): 2418-2427.
    Phelps, W. C., C. L. Yee, et al. (1988). "The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A." Cell 53(4): 539-547.
    Phillips, A. C. and K. H. Vousden (1997). "Analysis of the interaction between human papillomavirus type 16 E7 and the TATA binding protein, TBP." Journal of General Virology 78: 905-909.
    Pietenpol, J. A., R. W. Stein, et al. (1990). "TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains." Cell 61(5): 777-785.
    Pim, D. and L. Banks (2010). "Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses." Acta pathologica, microbiologica, et immunologica Scandinavica 118(6-7): 471-493.
    Polyak, K., J. Y. Kato, et al. (1994). "p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest." Genes & Development 8(1): 9-22.
    Precious, B., K. Childs, et al. (2005). "Simian Virus 5 V Protein Acts as an Adaptor, Linking DDB1 to STAT2, To Facilitate the Ubiquitination of STAT1." Journal of Virology 79(21): 13434-13441.
    Reinholz, M. M., M. W. An, et al. (2004). "Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue." Breast Cancer Research and Treatment 86(1): 75-88.
    Reinstein, E., M. Scheffner, et al. (2000). "Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue." Oncogene 19(51): 5944-5950.
    Rezazadeh, A., D. A. Laber, et al. (2009). "The role of human papilloma virus in lung cancer: a review of the evidence." The American Journal of the Medical Sciences 338(1): 64-67.
    Sahdev, S., S. K. Khattar, et al. (2008). "Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies." Molecular and Cellular Biochemistry 307(1-2): 249-264.
    Saluta, M. and P. A. Bell (1998). "Troubleshooting GST fusion protein expression in E. coli." Life Science News I: 1-3.
    Sambrook, J. and D. W. Russell (2001). "Molecular Cloning : A Laboratory Manual, third edition." Cold Spring Harbor Laboratory Pr 3: Chapter 15.
    Schaeffer, A. J., M. Nguyen, et al. (2004). "E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice." Cancer Research 64(2): 538-546.
    Scheffner, M. and N. J. Whitaker (2003). "Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system." Seminars in Cancer Biology 13(1): 59-67.
    Schiffman, M. and P. E. Castle (2003). "Human papillomavirus: epidemiology and public health." Archives of Pathology & Laboratory Medicine 127(8): 930-934.
    Schwarz, E., U. K. Freese, et al. (1985). "Structure and transcription of human papillomavirus sequences in cervical carcinoma cells." Nature 314(6006): 111-114.
    Selvey, L. A., L. A. Dunn, et al. (1994). "Human papillomavirus (HPV) type 18 E7 protein is a short-lived steroid-inducible phosphoprotein in HPV-transformed cell lines." Journal of General Virology 75(7): 1647-1653.
    Senga, T., U. Sivaprasad, et al. (2006). "PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination." Journal of Biological Chemistry 281(10): 6246-6252.
    Sharova, N., Y. Wu, et al. (2008). "Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction." PLoS Pathogens 4(5).
    Shiyanov, P., A. Nag, et al. (1999). "Cullin 4A associates with the UV-damaged DNA-binding protein DDB." Journal of Biological Chemistry 274(50): 35309-35312.
    Slebos, R. J., M. H. Lee, et al. (1994). "p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein." Proceedings of the National Academy of Sciences of the United States of America 91(12): 5320-5324.
    Song, S. Y., H. C. Pitot, et al. (1999). "The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals." Journal of Virology 73(7): 5887-5893.
    Srivastava, S., S. K. Swanson, et al. (2008). "Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection." PLoS Pathogens 4(5).
    Stanley, M., D. R. Lowy, et al. (2006). "Chapter 12: Prophylactic HPV vaccines: underlying mechanisms." Vaccine 24 Suppl 3: S3/106-113.
    Stanley, M. A., H. M. Browne, et al. (1989). "Properties of a non-tumorigenic human cervical keratinocyte cell line." International Journal of Cancer 43(4): 672-676.
    Steben, M. and E. Duarte-Franco (2007). "Human papillomavirus infection: epidemiology and pathophysiology." Gynecologic Oncology 107(2 Suppl 1): S2-5.
    Strati, K. and P. F. Lambert (2007). "Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer." Cancer Research 67(24): 11585-11593.
    Subramaniam, M., S. A. Harris, et al. (1995). "Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts." Nucleic Acids Research 23(23): 4907-4912.
    Sugasawa, K., Y. Okuda, et al. (2005). "UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex." Cell 121(3): 387-400.
    Thomas, M. and L. Banks (1999). "Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types." Journal of General Virology 80: 1513-1517.
    Tsvetkov, L. M., K. H. Yeh, et al. (1999). "p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27." Current Biology 9(12): 661-664.
    Ullman, C. G., P. I. Haris, et al. (1996). "Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7." The Biochemical Journal 319: 229-239.
    von Knebel Doeberitz, M. (2002). "New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections." European Journal of Cancer 38(17): 2229-2242.
    Vousden, K. H. and P. S. Jat (1989). "Functional similarity between HPV16E7, SV40 large T and adenovirus E1a proteins." Oncogene 4(2): 153-158.
    Walboomers, J. M., M. V. Jacobs, et al. (1999). "Human papillomavirus is a necessary cause of invasive cervical cancer worldwide." The Journal of Pathology 189(1): 12-19.
    Wang, H., L. Zhai, et al. (2006). "Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage." Molecular cell 22(3): 383-394.
    Wang, J., A. Sampath, et al. (2001). "Both Rb and E7 are regulated by the ubiquitin proteasome pathway in HPV-containing cervical tumor cells." Oncogene 20(34): 4740-4749.
    Wang, Y.-W., H.-S. Chang, et al. (2007). "HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity." The International Journal of Biochemistry & Cell Biology 39(2): 402-412.
    Ward, J., Z. Davis, et al. (2009). "HIV-1 Vpr Triggers Natural Killer Cell-Mediated Lysis of Infected Cells through Activation of the ATR-Mediated DNA Damage Response." PLoS Pathogens 5(10).
    Wen, X., K. M. Duus, et al. (2007). "The HIV1 protein Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor." Journal of Biological Chemistry 282(37): 27046-27057.
    Wertz, I. E., K. M. O'Rourke, et al. (2004). "Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin Ligase." Science 303(5662): 1371-1374.
    Woodman, C. B., S. I. Collins, et al. (2007). "The natural history of cervical HPV infection: unresolved issues." Nature Reviews Cancer 7(1): 11-22.
    Woods, Y. L., G. Rena, et al. (2001). "The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site." The Biochemical Journal 355(Pt 3): 597-607.
    Yang, K. Y., J. Arcaroli, et al. (2003). "Involvement of phosphatidylinositol 3-kinase gamma in neutrophil apoptosis." Cellular Signalling 15(2): 225-233.
    Yoon, C. S., K. D. Kim, et al. (2001). "alpha(6) Integrin is the main receptor of human papillomavirus type 16 VLP." Biochemical and Biophysical Research Communications 283(3): 668-673.
    Yugawa, T. and T. Kiyono (2009). "Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins." Reviews in medical virology 19(2): 97-113.
    Zanier, K., S. Charbonnier, et al. (2005). "Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance." Journal of molecular biology 349(2): 401-412.
    Zehbe, I., A. Ratsch, et al. (1999). "Overriding of cyclin-dependent kinase inhibitors by high and low risk human papillomavirus types: evidence for an in vivo role in cervical lesions." Oncogene 18(13): 2201-2211.
    Zerfass, K., A. Schulze, et al. (1995). "Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation." Journal of Virology 69(10): 6389-6399.
    Zhao, Y., Y. Shen, et al. (2010). "Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa." Journal of Biological Chemistry 285(7): 4355-4365

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE