| 研究生: |
吳雅萍 Wu, Ya-Ping |
|---|---|
| 論文名稱: |
含氯芳香族化合物對假單胞菌抑制效應之定量結構活性關係式 Quantitative Structure-Activity Relationships for inhibition effects of chlorinated aromatic compounds to Pseudomonas putida |
| 指導教授: |
黃守仁
Whang, Thou-Jen 黃得時 Huang, Ded-Shih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 定量結構活性關係式 、毒性測試 、含氯芳香族 、假單胞菌 |
| 外文關鍵詞: | QSAR, toxicity test, Pseudomonas putida, chlorinated aromatic |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是針對66個含氯取代的芳香族化合物對Pseudomonas putida (ATCC 23973)初始耗氧速率來做偵測,獲得的數值經過數據處理得到Ki-抑制常數,將log(1/Ki)當作毒性指標。在66個化合物中包含苯環單取代化合物、及含有氯的phenols、benzenes、anilines和toluenes等系列化合物,其中除了5個單取代化合物為競爭型抑制劑,其餘皆為非競爭型抑制劑。定量結構-活性關係式(Quantitative Structure Activity Relationships; QSARs)是探討化合物毒性與結構間的關係;本實驗利用logKi與正辛醇/水間的分配係數-logP和最低未填電子軌域能量(LUMO)求得QSAR模式
log(1/Ki)=-0.38(0.04)LUMO+0.46(0.03)logP-2.19(0.08)
n = 61, R2 = 0.896, s = 0.176, F = 250.0
有兩個chlorophenols (pKa≦6.5)在線性之外(outliers)而且在文獻中被歸類為” uncouplers “,將這兩個化合物的logP置換成相對phenoxide的logP,可得到以下QSAR模式
log(1/Ki)=-0.37(0.04)LUMO+0.48(0.02)logP-2.25(0.07)
n = 61, R2 = 0.923, s = 0.152, F = 347.32
而這些outliers測得較低的毒性是因為chlorophenols在實驗條件下會解離成phenoxide,而不是文獻中提出因為chlorophenols解離出的氫離子破壞ATP形成時H+的梯度所造成的。除了這些outliers,phenols, benzenes, anilines 和 toluenes有相同的抑制機構,這是因為這些化合物可以利用相同QSAR方程式來解釋,但是這些情況與Tetrahymena和Microtox的結果不盡相同。
The acute toxicity to Pseudomonas putida (ATCC 23973) of 66 chlorinated compounds, containing phenols, benzenes, anilines and toluenes, was using log(1/Ki) as a toxicity parameter. The Ki value was estimated from Pseudomonas initial oxygen uptake (PIOU) method. Except for five monosubstituted benzenes, all of the testing compounds are noncompetitive inhibitors. Quantitative Structure-Activity Relationships (QSARs) were developed for chemical and toxicological subsets. A quantitative structure-toxicity model correlating with 1-octanol/water partition coefficient (log P) and energy of the lowest unoccupied molecular orbital (LUMO) was developed and result to the following equation.
log(1/Ki)=-0.38(0.04)LUMO+0.46(0.03)logP-2.19(0.08)
n = 61, R2 = 0.896, s = 0.176, F = 250.0
Two chlorophenols (pKa≦6.5) being classified as “uncouplers” were outliers of our QSAR. The logP of these phenols was rectified by the corresponding phenoxide. The model was changed to
log(1/Ki)=-0.37(0.04)LUMO+0.48(0.02)logP-2.25(0.07)
n = 61, R2 = 0.923, s = 0.152, F = 347.32
The lower toxicity of these outliers is due to the dissociation of phenols to their corresponding phenoxides rather than uncoupling mechanism of action on the synthesis of ATP and oxidative phosphorylation. The current results also indicated that phenols, benzenes, anilines and toluenes are share a similar inhibitory action mechanism as they can be explained by the same QSAR equation. This result is different from that of Tetrahymena pyriforms and Microtox.
1. Bitton, G., and B. J. Dutka., Toxicity testing using microorganisms Volume I. CRC Press, Boca Raton, Florida, USA. pp: 57-74, 1986.
2. Cronin, M. T. D., and Schultz T. W., Structure-toxicity relationships for phenols to Tetrahymena pyriformis. Chemosphere. 32, 1453-1468, 1996.
3. Cronin, M. T. D.,A. O. Aptula, C D. Judith, T. I. Netzeva, P. H. Rowe, I. V. Valkova, and T. W. Schultz., Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49:1201-1221, 2002.
4. Dearden, J. C., Prediction of environmental toxicity and fate using quantitative structure-activity relationships(QSARs).J. Braz. Chem. Soc. 13, 754-762, 2002.
5. Devillers J. Comparative QSAR. Taylor & Francis, UAS. pp: 51-109, 1995
6. Elnabarawy, M. T., Robideau, R. R., and Beach, S. A., Comparison of three rapid toxicity test procedures:Microtox, Polytox, and Activated sludge respiration inhibition. Toxicity Assessment. 3, 361-370, 1988.
7. Escher B. I., and Schwarzenbach R. P., Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modelling effective membrane concentration in aquatic organisms. Aquatic Science 64, 20-35, 2002.
8. Hansch, C., and Leo, A. Hoekman D., Exploring QSAR:Hydrophobic, Electronic, and Steric Constants. ACS Professional reference Book, American Chemical Society, Washington, DC. pp: 1-133, 1995.
9. Hansch, C., Maloney, P. P., Fujita, T., and Muir, R. M.,1962. The correlation of the biological activity of phenoxyacetic acids with Hammett substituent constants and partitition coefficients. Nature. 194, 178-180, 1962.
10. Kubinyi, H., QSAR:Hansch Analysis and Related Approaches . VCH Publishers, New York, NY(USA). pp: 4-49, 1993.
11. Landis, W. G., and Yu M.H., Introduction to environmental toxicology. CRC Press, USA, pp: 45-47, 1995.
12. Nelson, D. L. and Cox, M. M., Lehninger Principles of Biochemistry. Worth Publishers, New York, pp: 256-267, 2000.
13. Nirmalakhandan, N., Peace,J., Egemen, E., M.Mohsin, Sun B.,and Hall E., Estimating toxicity of mixtures of organic chemicals to activated sludge using surrogate test cultures. Wat. Sci. Tech. 34, 87-92, 1996.
14. Ribo, J. M.,and Kaiser, K. L. E., Potobacterium Phosphoreum Toxicity Bioassay. Toxicity Assessment. 2, 305-323, 1987.
15. Schultz, T. W., The use of of ionization constant (pKa)in selecting models of toxicity in phenols. Ecotox. Environ. Safety 14, 178-183, 1987.
16. Schultz, T. W., Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chem. Res. Toxicol. 12, 1262-1267, 1999.
17. Schultz, T. W., and M. T. D. Cronin. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fischeri. Environ. Toxicol. Chem. 16:357-360, 1997.
18. Sixt, S., Altschuh J., and Brüggemann R., Quantitative structure-toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere 30, 2397-2414, 1995.
19. Speece, R. E., Structure-activity relationships:Quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ. Sci. Technol. 22, 606-615, 1988.
20. Sykes, P. A., Guidbook to mechanism in organic chemistry. John Wiley & Sons, Inc., New York, 1993.
21. Toussaint, M. W., Shedd, T. R., Willam H. van der Schalie, Leather, G. R., A comparison of stander acute toxicity tests with rapid-screening toxicity tests. Environmental Toxicology and Chemistry 14, 907-915, 1995.
22. Vaes, W. H.J., E. U. Ramos, H. J. M. Verhaar, and J. L. M. Hermens. Acute toxicity of nonpolar versus polar narcosis: is there a different? Environ. Toxicol. Chem. 17:1380-1384, 1998.
23. Verhaar, H. J. M., C. J. Van Leeuwen , and Hermens, J. L. M., Classifying environmental pollutants. 1:Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25:471-491, 1992.
24. Wackett, L. P., Pseudomonas putida-a versatile biocatalyst. Nature Biotechnology 21, 136-138, 2003.
25. Zhao, Y. T., M. T. Cronin, and J. C. Dearden, Quantitative structure-activity relationships of chemicals acting by nonpolar narcosis – theoretical considerations. Quant. Struct. Act. Relat. 17, 131–138, 1998.