| 研究生: |
陳俊宏 Chen, Chun-Hung |
|---|---|
| 論文名稱: |
金屬接觸轉印與滾印技術應用於微奈米結構的製造與元件開發 Direct Metal Contact Printing and Roller Printing Technology for Micro/Nano-Structure Fabrication and Applications |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 紅外光雷射 、紅外光燈源 、接觸轉印 、接觸滾印 、金屬圖案 、直接轉印 、微奈米金屬粒子 、可撓式 、偏光片 、表面電漿子共振 |
| 外文關鍵詞: | infrared laser, infrared lamp, contact printing, roller contact printing, metallic pattern, direct transfer, metallic micro/nano-particle, flexible, polarizer, surface plasmon resonance |
| 相關次數: | 點閱:156 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米壓印與轉印技術的發明開啟了新的奈米圖形佈植技術,不同於傳統光學微影技術之處在於奈米壓印與轉印技術具備了低成本、高效率的奈米圖形轉移能力。基於此因,本論文研究如何利用紅外光源的加熱方式將模仁表面上的金屬圖案直接轉印至基板上,以完成奈米圖形的轉移與佈植,並建立一套連續、大面積且穩定的轉印製程。為達到前述目的,本文開發了數種不同的轉印製程;由最初的紅外光雷射輔助直接接觸轉印技術,至紅外光燈源輔助的接觸滾印技術;經由觀察製程的實驗結果進而改進製程技術;例如:加熱源的改變,由紅外光燈源取代了紅外光雷射;施力方式的改變,由平面施壓轉變為滾輪施壓;基板材料的改變,由硬式的矽基板轉變為具可撓性的PET基板;使得所開發的奈米轉印製程達到低成本、高效率及大面積的奈米圖形轉印能力。
除此之外,本文另外發展一種雙步驟接觸轉印技術,除了可以提昇模仁的再利用率外,也可以一次轉印出兩個具備高互補性的微奈米圖案,同時也減少了金屬薄膜殘餘在模仁上的清潔問題。
最後,本論文以紅外光雷射輔助直接接觸轉印技術與紅外光燈源輔助接觸滾印技術為基礎,製作出可撓式的偏光片以及具有規則排列的微奈米金屬粒子,並將此規則排列的金屬粒子應用於表面電漿子共振效應的研究上。本論文開發並驗證紅外光輔助接觸轉印技術為微奈米圖形轉移與製作微奈米結構元件的有效工具。
The inventions of nano-imprinting and nano-printing lithography create a new landmark for nano-patterning technology. The differences between conventional photolithography and nano-imprinting and nano-printing lithography are that nano-imprinting and nano-printing lithography have the advantages of low cost and high efficient in nano-patterns transfer process. For this reason, this dissertation investigates the nano-patterning technology which utilizes an infrared laser or an infrared lamp to heat up the metallic patterns and transfer the metallic patterns from the surface of a mold to a substrate. Furthermore, another objective of this study is to build up a stable and reliable process for continuous pattern transfer over large area.
To achieve the aforementioned objectives, we developed several techniques fort pattern transfer ranging from infrared laser assisted direct contact printing lithography (IR-LCP) to infrared lamp assisted roller contact printing lithography (IR-RCP). By observing their experimental results, we modify and improve these processes such as replacing an infrared pulse laser by an infrared lamp, a plane pressure by a line-shape loading force by a roller and a rigid Si substrate by a flexible polyethylene terephthalate (PET) substrate. These changes can achieve our objectives in nano-patterns transfer with low cost, high efficient, and large area.
In addition, a dual-step contact printing lithography is developed which can enhance the efficiency in the recycling of the used mold and reduce the residual metal films on the used mold. This technique utilizes a UV resin with both the properties of adhesion and UV curing to adhere the bottom metal layer. It can allow one single mold to transfer two highly complementary patterns to two different substrates separately and reduce the residual metal films on the used mold.
Finally, two applications on the fabrications of a flexible polarizer and the highly ordered metallic micro/nano-particles have been proposed in this dissertation based on IR-LCP and IR-RCP. The highly ordered metallic micro/nano-particles are applied to the research of surface plasmon resonance (SPR). Experimental results successfully demonstrate that the infrared assisted direct contact printing technologies are an effective tools for micro/nano-patterning and micro/nano-structure fabrication as well as related innovative devices.
[1] Chou, S. Y., Krauss, P. R., and Renstrom, P. J., “Imprint lithography with 25-nanometer resolution,” Science 272, p.85-87, 1996.
[2] Chou, S. Y. and Krauss, P. R., “Imprint lithography with sub-10 nm feature size and high throughput,” Microelect. Eng. 35, p.237-240, 1997.
[3] Guo, L., Krauss, P. R., and Chou, S. Y., “Nanoscale silicon field effect transistors fabricated using imprint lithography,” Appl. Phys. Lett. 71, p.1881-1883, 1997.
[4] Zhang, W. and Chou, S. Y., “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,” Appl. Phys. Lett. 83, p.1632-1634,2003.
[5] Colburn, M., Johnson, S., Stewart, M., Damle, S., Bailey, T., Choi, B., Wedlake, M., Michaelson, T., Sreenivasan, S. V., Ekerdt, J., and Willson, C. G., “Step and flash imprint lithography: a new approach to high-resolution patterning,” Proc. SPIE 3676, p.379-389, 1999.
[6] Stewart, M. D., Johnson, S. C., Sreenivasan, S. V., Resnick, D. J., and Willson, C. G., “Nanofabrication with step and flash imprint lithography,” J. Microlith., Microfab. and Microsys. 4(1), p. 1-6 (011002), 2005.
[7] Xia, Y., Mrksich, M., Kim, E., and Whitesides, G. M., “Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication,” J. Am. Chem. Soc. 117, p.9576-9577 1995.
[8] Xia, Y. and Whitesides, G. M. “Soft lithography,” Angew. Chem. Int. Ed. 37, p.550-75, 1998.
[9] Wolfe, D. B., Love, J. C., Gates, B. D., Whitesides, G. M., Conroy, R. S., and Prentiss, M., “Fabrication of planar optical waveguides by electrical microcontact printing,” Appl. Phys. Lett. 84, p.1623-1625, 2004.
[10] Xia, Y., Rogers, J. A., Paul, K. E., and Whitesides, G. M., “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, p.1823-1848, 1999.
[11] Chou, S. Y., Keimel, C., and Gu, J, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417, p.835-837, 2002.
[12] Tan, H., Gilbertson, A., and Chou, S. Y., “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), p.3926-3928, 1998.
[13] Xia, Y., Qin, D., and Whitesides, G. M., “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometel-sized features,” Adv. Mater. 8, p.1015-1017, 1996.
[14] Chen, C. H. and Lee, Y. C., “Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating,” J. Micromech. Microeng. 17, p.1252–1256, 2007.
[15] Beck, M., Graczyk, M., Maximov, I., Sarwe, E. L., Ling, T. G. I., and Montelius, L., “Improving nanoimprint lithography stamp for 10 nm features,” IEEE-NANO, p.17-22 2001.
[16] Jung, G. Y., Li, Z., Wu, W., Chen, Y., Olynick, D. L., Wang, S. Y., Tong, W. M., and Williams, R. S., “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21, p.1158–1161, 2005.
[17] Lee, Y. C., Chen, H. L., Chen, C. H., and Lin, H. Y., “Infrared heating and roller-based contact printing technology for the fabrication of micro/nano-structures,” 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, p.779-782, 2009.
[18] Chen, C. H., Yu, T. H., and Lee, Y. C., “Direct patterning of metallic micro/nano-structures on flexible polymer substrates by roller-based contact printing and infrared heating, ” J. Micromech. Microeng. 20, p.1-8 (025034), 2010.
[19] Kim, C., Burrows, P. E., and Forrest, S. R., “Micropatterning of organic electronic devices by cold-welding,” Science 288, p.831-833, 2000.
[20] Kim, C., Shtein, M., and Forrest, S. R., “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett. 80, p.4051-4053, 2002
[21] Kim, C. and Forrest, S. R., “Fabrication of organic light-emitting devices by low-pressure cold welding,” Adv. Mater. 15, p.541-545, 2003.
[22] Kim, C., Cao, Y., Soboyejo, W. O., and Forrest, S. R., “Patterning of active organic materials by direct transfer for organic electronic devices,” J. Appl. Phys. 97, p. 1-6 (113512), 2005.
[23] Cao, Y., Kim, C., Forrest, S. R., and Soboyejo, W., “Effects of dust particles and layer properties on organic electronic devices fabricated by stamping,” J. Appl. Phys. 98, p. 1-6 (033713), 2005.
[24] Loo, Y. L., Hsu, J. W. P., Willett, R. L., Baldwin, K. W., West, K. W., and Rogers, J. A., “High-resolution transfer printing on GaAs surfaces using alkane dithiol monolayers,” J. Vac. Sci. Technol. B 20(6), p.2853-2856, 2002.
[25] Loo, Y. L., Willett, R. L., Baldwin, K. W., and Rogers, J. A., “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124, p.7654-7655, 2002.
[26] Loo, Y. L., Willett, R. L., Baldwin, K. W., and Rogers, J. A., “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), p.562-564, 2002.
[27] Loo, Y. L., Lang, D. V., Rogers, J. A., and Hsu, J. W. P., “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3, 2003
[28] Wang, Z., Yuan, J., Zhang, J., Xing, R., Yan, D., and Han, Y., “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15, 1009-1012, 2003.
[29] Kim, J., Bae, S. H., and Lim, H. G., “Micro transfer printing on cellulose electro-active paper,” Smart Mater. Struct. 15, p.889–892, 2006
[30] Lee, C. Y., “Mask Embedded Nano-Imprinting Technology for the Fabrication of Large-Area Micro/Nano-Structures,” Master's thesis, Institute of Mechanical Engineering, National Cheng Kung University, 2009.
[31] Ahn, S. W., Lee, K. D., Kim, J. S., Kim, S. H., Park, J. D., Lee, S. H., and Yoon, P. W., “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, p.1874–1877, 2005.
[32] Kim, T. I. and Seo, S. M., “The facile fabrication of a wire-grid polarizer by reversal rigiflex printing,” Nanotechnology 23, p.1-6 (145305), 2009.
[33] Ahn, S. H., Kim, J. S., and Guo, L. J., “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), p.2388-2391, 2007.
[34] Chen, L., Wang, J. J., Walters, F., Deng, X., Buonanno, M., Tai, S., and Liu, X., “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, p.1-3 (063111), 2007.
[35] Ahn, S. H. and Guo, L. J., “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, p.2044-2049, 2008.
[36] Vriens, L. and Rippens, W., “Optical constants of absorbing thin solid films on a substrate,” Applied Optics 22, p.4105-4110, 1983.
[37] Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., and Mirkin, C. A., “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, p.1078-1081, 1997.
[38] Niemeyer, C. M. and Simon, U., “DNA-based assembly of metal nanoparticles,” Eur. J. Inorg. Chem., p.3641-3655, 2005.
[39] Thaxton, C. S., Georganopoulou, D. G., and Mirkin, C. A., “Gold nanoparticle probes for the detection of nucleic acid targets,” Clin. Chim. Acta 363, p.120-126, 2006.
[40] Eaton, P., Doria, G., Pereira, E., Baptista, P. V., and Franco, R., “Imaging gold nanoparticles for DNA sequence recognition in biomedical applications,” IEEE Trans. Nanobiosci. 6, p.282-288, 2007.
[41] Babes, L., Denizot, B., Tanguy, G., Jeune, J. J. L., and Jallet, P., “Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study,” J. Colloid Interface Sci. 212, p.474-482, 1999.
[42] Shinkai, M., “Functional magnetic particles for medical application,” J. Biosci. Bioeng. 94, p.606-613, 2002.
[43] Speliotis, D. E., “Magnetic recording beyond the first 100 years,” J. Magn. Magn. Mater. 193, p.29-35, 1999.
[44] New, R. M. H., Pease, R. F. W., and White, R. L., “Submicron patterning of thin cobalt films for magnetic storage,” J. Vac. Sci. Technol. B 12, p.3196-3201, 1994.
[45] Chou, S. Y., Krauss, P. R., and Kong, L., “Nanolithographically defined magnetic structures and quantum magnetic disk,” J. Appl. Phys. 79, p.6101-6106, 1996.
[46] Lee, D., Cohen, R. E., and Rubner, M. F., “Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles,” Langmuir 21, p.9651-9659, 2005.
[47] Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., and Kim, J. O., “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” J. Biomed. Mater. Res. A 52, p.662-668, 2000.
[48] Dietz, T. G., Duncan, M. A., Powers, D. E., and Smalley, R. E., “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), p. 6511-6512, 1981.
[49] Seto, T., Kawakami, Y., Suzuki, N., Hirasawa, M., and Aya, N., “Laser synthesis of uniform silicon single nanodots,” Nano Letter 1, p. 315-3181, 2001.
[50] Mafun, F., Kohno, J. Y., Takeda, Y., Kondow, T., and Sawabe, H., “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), p.8333-8337, 2000.
[51] Mafun, F., Kohno, J. Y., Takeda, Y., Kondow, T., and Sawabe, H., “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), p.9111-9117, 2000.
[52] Mafun, F., Kohno, J. Y., Takeda, Y., Kondow, T., and Sawabe, H., “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), p.5114-5120, 2001.
[53] Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Ezersky, V., and Eliezer, D., “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser and Particle Beams 23, p.15-19, 2005.
[54] Liu, B., Hu, Z., Che, Y., Chen, Y., and Pan, X., “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90, p.1-3 (044103), 2007.
[55] Liu, B., Hu, Z., Chen, Y., Sun, K., Pan, X., and Che, Y., “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. of SPIE 6645, p.1-9 (66450R), 2007.
[56] Ganeev, R. A., Chakravarty, U., Naik, P. A., Srivastava, H., Mukherjee, C., Tiwari, M. K., Nandedkar, R. V., and Gupta, P. D., “Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses,” Applied Optics 46, p.1205-1210, 2007.
[57] Roginsky, S. and Schalnikoff, A., “Eine neue methode der herstellung kolloider lösungen” Colloid & Polymer Scienc 43, p.67-70, 1927.
[58] Bonnemann, H., Brijoux, W., Brinkmann, R., Dinjus, E., Joupen, T., and Korall, B., “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30, pp.1312-1314, 1991.
[59] Maier, S.A., “Plasmonics: Fundamentals and Applications,” Springer, 2007.
[60] Hutter, E. and Fwndler, J. H., “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16, p.1685-1706, 2004.