簡易檢索 / 詳目顯示

研究生: 林靖喆
Lin, Ching-Che
論文名稱: 直立型硫化銦鋅奈米片陣列光觸媒應用於二氧化碳光轉換之研究
Vertical Zinc Indium Sulfide Nanosheet Array Photocatalysts for Carbon Dioxide Photoconversion
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 硫化銦鋅奈米片陣列ZnIn2S4二氧化碳光轉換二維奈米片
外文關鍵詞: zinc indium sulfide, nanosheet array, ZnIn2S4, carbon dioxide photoconversion, two-dimensional nanosheet
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 誌謝 VI 目錄 IX 表目錄 XII 圖目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機 1 第2章 文獻回顧 3 2.1 半導體光觸媒還原二氧化碳 3 2.1.1 基本原理 3 2.1.2 效率改善策略 5 2.2 硫化銦鋅基本性質 9 2.2.1 硫化銦鋅結晶結構與光觸媒特性 9 2.2.2 硫化銦鋅成長機制 10 2.3 硫化銦鋅光催化劑應用 12 2.3.1 二氧化碳光轉換 12 2.3.2 光催化分解水 16 2.3.3 汙染物光降解 18 第3章 實驗方法與步驟 20 3.1 實驗材料 20 3.1.1 製備直立型硫化銦鋅奈米片陣列 20 3.1.2 爐管熱處理 20 3.1.3 二氧化碳光轉換實驗材料 20 3.2 實驗流程 21 3.2.1 清洗FTO基板 21 3.2.2 製備直立型硫化銦鋅奈米片陣列 21 3.2.3 直立型硫化銦鋅奈米片陣列後處理 22 3.3 二氧化碳光轉化系統 22 3.4 分析與鑑定 24 3.4.1 掃描式電子顯微鏡(Scanning electron microscope) 24 3.4.2 穿透式電子顯微鏡(Transmission electron microscope) 24 3.4.3 拉曼散射光譜儀(Raman scattering spectrometer) 25 3.4.4 紫外光-可見光吸收光譜儀(UV-Visible Absorption Spectrometer) 26 3.4.5 化學分析電子能譜儀(Electron Spectroscopy For Chemical Analysis, XPS) 27 3.4.6 氣相層析儀(Gas chromatography) 28 3.4.7 螢光光譜儀(Photoluminescence)/時間解析螢光光譜儀(Time-resolved photoluminescence) 29 3.4.8 X光繞射分析儀(X-ray diffractometer, XRD) 30 第4章 結果與討論 31 4.1 直立型硫化銦鋅奈米片陣列之形貌分析 31 4.1.1 直立型硫化銦鋅奈米片陣列之形貌分析 31 4.1.2 經不同氣氛後處理之奈米片陣列形貌分析 32 4.2 直立型硫化銦鋅奈米片陣列之特性分析 34 4.3 直立型硫化銦鋅奈米片陣列於二氧化碳光轉換效能之比較 50 4.4 二氧化碳光轉換機制探討 56 第5章 結論 62 參考文獻 64

    (1) Parry, M.; Parry, M. L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC, Cambridge University Press: 2007; Vol. 4.
    (2) Li, K.; Peng, B.; Peng, T. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis 2016, 6 (11), 7485-7527, DOI: 10.1021/acscatal.6b02089.
    (3) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38, DOI: 10.1038/238037a0.
    (4) Pan, Y.; Yuan, X.; Jiang, L.; Yu, H.; Zhang, J.; Wang, H.; Guan, R.; Zeng, G. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chemical Engineering Journal 2018, 354, 407-431, DOI: https://doi.org/10.1016/j.cej.2018.08.028.
    (5) Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology 2013, 3 (10), 2481, DOI: 10.1039/c3cy00345k.
    (6) Thompson, W. A.; Sanchez Fernandez, E.; Maroto-Valer, M. M. Review and Analysis of CO2 Photoreduction Kinetics. ACS Sustainable Chemistry & Engineering 2020, 8 (12), 4677-4692, DOI: 10.1021/acssuschemeng.9b06170.
    (7) Nguyen, C. C.; Vu, N. N.; Do, T.-O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. Journal of Materials Chemistry A 2015, 3 (36), 18345-18359, DOI: 10.1039/c5ta04326c.
    (8) Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie International Edition 2018, 57 (26), 7610-7627, DOI: 10.1002/anie.201710509.
    (9) Shen, S.; Guo, P.; Zhao, L.; Du, Y.; Guo, L. Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. Journal of Solid State Chemistry 2011, 184 (8), 2250-2256, DOI: 10.1016/j.jssc.2011.06.033.
    (10) Chen, J.; Xin, F.; Yin, X.; Xiang, T.; Wang, Y. Synthesis of hexagonal and cubic ZnIn2S4 nanosheets for the photocatalytic reduction of CO2 with methanol. RSC Advances 2015, 5 (5), 3833-3839, DOI: 10.1039/c4ra13191f.
    (11) Peng, S.; Li, L.; Wu, Y.; Jia, L.; Tian, L.; Srinivasan, M.; Ramakrishna, S.; Yan, Q.; Mhaisalkar, S. G. Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm 2013, 15 (10), 1922, DOI: 10.1039/c2ce26593a.
    (12) Chen, Y.; Hu, S.; Liu, W.; Chen, X.; Wu, L.; Wang, X.; Liu, P.; Li, Z. Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions 2011, 40 (11), 2607, DOI: 10.1039/c0dt01435d.
    (13) Shi, L.; Yin, P.; Dai, Y. Synthesis and Photocatalytic Performance of ZnIn2S4 Nanotubes and Nanowires. Langmuir 2013, 29 (41), 12818-12822, DOI: 10.1021/la402473k.
    (14) Zhang, W.; Mohamed, A. R.; Ong, W. J. Z‐Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angewandte Chemie International Edition 2020, 59 (51), 22894-22915, DOI: 10.1002/anie.201914925.
    (15) Mohamed, R. M.; Shawky, A.; Aljahdali, M. S. Palladium/zinc indium sulfide microspheres: Enhanced photocatalysts prepare methanol under visible light conditions. Journal of the Taiwan Institute of Chemical Engineers 2016, 65, 498-504, DOI: 10.1016/j.jtice.2016.05.027.
    (16) Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; Xie, Y. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. Journal of the American Chemical Society 2017, 139 (22), 7586-7594, DOI: 10.1021/jacs.7b02290.
    (17) Yang, G.; Chen, D.; Ding, H.; Feng, J.; Zhang, J. Z.; Zhu, Y.; Hamid, S.; Bahnemann, D. W. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental 2017, 219, 611-618, DOI: https://doi.org/10.1016/j.apcatb.2017.08.016.
    (18) Shen, S.; Zhao, L.; Zhou, Z.; Guo, L. Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation. The Journal of Physical Chemistry C 2008, 112 (41), 16148-16155, DOI: 10.1021/jp804525q.
    (19) Liu, H.; Jin, Z.; Xu, Z.; Zhang, Z.; Ao, D. Fabrication of ZnIn2S4–g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants. RSC Advances 2015, 5 (119), 97951-97961, DOI: 10.1039/c5ra17028a.
    (20) Chen, Z.; Li, D.; Zhang, W.; Shao, Y.; Chen, T.; Sun, M.; Fu, X. Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation. The Journal of Physical Chemistry C 2009, 113 (11), 4433-4440, DOI: 10.1021/jp8092513.
    (21) Li, H.; Yu, H.; Chen, S.; Zhao, H.; Zhang, Y.; Quan, X. Fabrication of graphene wrapped ZnIn2S4microspheres heterojunction with enhanced interfacial contact and its improved photocatalytic performance. Dalton Trans. 2014, 43 (7), 2888-2894, DOI: 10.1039/c3dt52820k.
    (22) Chen, W.; Chang, L.; Ren, S.-B.; He, Z.-C.; Huang, G.-B.; Liu, X.-H. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. Journal of Hazardous Materials 2020, 384, 121308, DOI: 10.1016/j.jhazmat.2019.121308.
    (23) Moura, C. C.; Tare, R. S.; Oreffo, R. O. C.; Mahajan, S. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 2016, 13 (118), 20160182, DOI: 10.1098/rsif.2016.0182.
    (24) Peng, S.; Zhu, P.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishna, S. Facile solution deposition of ZnIn2S4 nanosheet films on FTO substrates for photoelectric application. Nanoscale 2011, 3 (6), 2602, DOI: 10.1039/c0nr00955e.
    (25) Van der Drift, A. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep 1967, 22 (3), 267.
    (26) Zallen, R.; Slade, M. Rigid-layer modes in chalcogenide crystals. Physical Review B 1974, 9 (4), 1627-1637, DOI: 10.1103/physrevb.9.1627.
    (27) Razzetti, C.; Lottici, P. P.; Zanotti, L. Raman spectroscopy in AB2X4 pseudoternary layered compounds. Journal of Molecular Structure 1984, 115, 153-156, DOI: 10.1016/0022-2860(84)80037-x.
    (28) Horani, F.; Lifshitz, E. Unraveling the Growth Mechanism Forming Stable γ-In2S3 and β-In2S3 Colloidal Nanoplatelets. Chemistry of Materials 2019, 31 (5), 1784-1793, DOI: 10.1021/acs.chemmater.9b00013.
    (29) Unger, W. K.; Farnworth, B.; Irwin, J. C.; Pink, H. Raman and infrared spectra of CdIn2S4 and ZnIn2S4. Solid State Communications 1978, 25 (11), 913-915, DOI: 10.1016/0038-1098(78)90300-9.
    (30) Pan, B.; Wu, Y.; Rhimi, B.; Qin, J.; Huang, Y.; Yuan, M.; Wang, C. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. Journal of Energy Chemistry 2021, 57, 1-9, DOI: https://doi.org/10.1016/j.jechem.2020.08.024.

    無法下載圖示 校內:2026-09-03公開
    校外:2026-09-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE