| 研究生: |
林靖喆 Lin, Ching-Che |
|---|---|
| 論文名稱: |
直立型硫化銦鋅奈米片陣列光觸媒應用於二氧化碳光轉換之研究 Vertical Zinc Indium Sulfide Nanosheet Array Photocatalysts for Carbon Dioxide Photoconversion |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 硫化銦鋅 、奈米片陣列 、ZnIn2S4 、二氧化碳光轉換 、二維奈米片 |
| 外文關鍵詞: | zinc indium sulfide, nanosheet array, ZnIn2S4, carbon dioxide photoconversion, two-dimensional nanosheet |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Parry, M.; Parry, M. L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC, Cambridge University Press: 2007; Vol. 4.
(2) Li, K.; Peng, B.; Peng, T. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis 2016, 6 (11), 7485-7527, DOI: 10.1021/acscatal.6b02089.
(3) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38, DOI: 10.1038/238037a0.
(4) Pan, Y.; Yuan, X.; Jiang, L.; Yu, H.; Zhang, J.; Wang, H.; Guan, R.; Zeng, G. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chemical Engineering Journal 2018, 354, 407-431, DOI: https://doi.org/10.1016/j.cej.2018.08.028.
(5) Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology 2013, 3 (10), 2481, DOI: 10.1039/c3cy00345k.
(6) Thompson, W. A.; Sanchez Fernandez, E.; Maroto-Valer, M. M. Review and Analysis of CO2 Photoreduction Kinetics. ACS Sustainable Chemistry & Engineering 2020, 8 (12), 4677-4692, DOI: 10.1021/acssuschemeng.9b06170.
(7) Nguyen, C. C.; Vu, N. N.; Do, T.-O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. Journal of Materials Chemistry A 2015, 3 (36), 18345-18359, DOI: 10.1039/c5ta04326c.
(8) Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie International Edition 2018, 57 (26), 7610-7627, DOI: 10.1002/anie.201710509.
(9) Shen, S.; Guo, P.; Zhao, L.; Du, Y.; Guo, L. Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. Journal of Solid State Chemistry 2011, 184 (8), 2250-2256, DOI: 10.1016/j.jssc.2011.06.033.
(10) Chen, J.; Xin, F.; Yin, X.; Xiang, T.; Wang, Y. Synthesis of hexagonal and cubic ZnIn2S4 nanosheets for the photocatalytic reduction of CO2 with methanol. RSC Advances 2015, 5 (5), 3833-3839, DOI: 10.1039/c4ra13191f.
(11) Peng, S.; Li, L.; Wu, Y.; Jia, L.; Tian, L.; Srinivasan, M.; Ramakrishna, S.; Yan, Q.; Mhaisalkar, S. G. Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm 2013, 15 (10), 1922, DOI: 10.1039/c2ce26593a.
(12) Chen, Y.; Hu, S.; Liu, W.; Chen, X.; Wu, L.; Wang, X.; Liu, P.; Li, Z. Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions 2011, 40 (11), 2607, DOI: 10.1039/c0dt01435d.
(13) Shi, L.; Yin, P.; Dai, Y. Synthesis and Photocatalytic Performance of ZnIn2S4 Nanotubes and Nanowires. Langmuir 2013, 29 (41), 12818-12822, DOI: 10.1021/la402473k.
(14) Zhang, W.; Mohamed, A. R.; Ong, W. J. Z‐Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angewandte Chemie International Edition 2020, 59 (51), 22894-22915, DOI: 10.1002/anie.201914925.
(15) Mohamed, R. M.; Shawky, A.; Aljahdali, M. S. Palladium/zinc indium sulfide microspheres: Enhanced photocatalysts prepare methanol under visible light conditions. Journal of the Taiwan Institute of Chemical Engineers 2016, 65, 498-504, DOI: 10.1016/j.jtice.2016.05.027.
(16) Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; Xie, Y. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. Journal of the American Chemical Society 2017, 139 (22), 7586-7594, DOI: 10.1021/jacs.7b02290.
(17) Yang, G.; Chen, D.; Ding, H.; Feng, J.; Zhang, J. Z.; Zhu, Y.; Hamid, S.; Bahnemann, D. W. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental 2017, 219, 611-618, DOI: https://doi.org/10.1016/j.apcatb.2017.08.016.
(18) Shen, S.; Zhao, L.; Zhou, Z.; Guo, L. Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped ZnIn2S4 under Visible Light Irradiation. The Journal of Physical Chemistry C 2008, 112 (41), 16148-16155, DOI: 10.1021/jp804525q.
(19) Liu, H.; Jin, Z.; Xu, Z.; Zhang, Z.; Ao, D. Fabrication of ZnIn2S4–g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants. RSC Advances 2015, 5 (119), 97951-97961, DOI: 10.1039/c5ra17028a.
(20) Chen, Z.; Li, D.; Zhang, W.; Shao, Y.; Chen, T.; Sun, M.; Fu, X. Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation. The Journal of Physical Chemistry C 2009, 113 (11), 4433-4440, DOI: 10.1021/jp8092513.
(21) Li, H.; Yu, H.; Chen, S.; Zhao, H.; Zhang, Y.; Quan, X. Fabrication of graphene wrapped ZnIn2S4microspheres heterojunction with enhanced interfacial contact and its improved photocatalytic performance. Dalton Trans. 2014, 43 (7), 2888-2894, DOI: 10.1039/c3dt52820k.
(22) Chen, W.; Chang, L.; Ren, S.-B.; He, Z.-C.; Huang, G.-B.; Liu, X.-H. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. Journal of Hazardous Materials 2020, 384, 121308, DOI: 10.1016/j.jhazmat.2019.121308.
(23) Moura, C. C.; Tare, R. S.; Oreffo, R. O. C.; Mahajan, S. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 2016, 13 (118), 20160182, DOI: 10.1098/rsif.2016.0182.
(24) Peng, S.; Zhu, P.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishna, S. Facile solution deposition of ZnIn2S4 nanosheet films on FTO substrates for photoelectric application. Nanoscale 2011, 3 (6), 2602, DOI: 10.1039/c0nr00955e.
(25) Van der Drift, A. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep 1967, 22 (3), 267.
(26) Zallen, R.; Slade, M. Rigid-layer modes in chalcogenide crystals. Physical Review B 1974, 9 (4), 1627-1637, DOI: 10.1103/physrevb.9.1627.
(27) Razzetti, C.; Lottici, P. P.; Zanotti, L. Raman spectroscopy in AB2X4 pseudoternary layered compounds. Journal of Molecular Structure 1984, 115, 153-156, DOI: 10.1016/0022-2860(84)80037-x.
(28) Horani, F.; Lifshitz, E. Unraveling the Growth Mechanism Forming Stable γ-In2S3 and β-In2S3 Colloidal Nanoplatelets. Chemistry of Materials 2019, 31 (5), 1784-1793, DOI: 10.1021/acs.chemmater.9b00013.
(29) Unger, W. K.; Farnworth, B.; Irwin, J. C.; Pink, H. Raman and infrared spectra of CdIn2S4 and ZnIn2S4. Solid State Communications 1978, 25 (11), 913-915, DOI: 10.1016/0038-1098(78)90300-9.
(30) Pan, B.; Wu, Y.; Rhimi, B.; Qin, J.; Huang, Y.; Yuan, M.; Wang, C. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. Journal of Energy Chemistry 2021, 57, 1-9, DOI: https://doi.org/10.1016/j.jechem.2020.08.024.
校內:2026-09-03公開