簡易檢索 / 詳目顯示

研究生: 廖士懿
Liau, Shih-Yi
論文名稱: 硫化鎘與硒化鎘敏化TiO2光電極在光電化 學系統產氫之研究
Photoelectrochemical hydrogen generation by CdS- and CdSe- sensitized TiO2 photoelectrodes.
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 119
中文關鍵詞: 硒化鎘硫化鎘化學浴沈積水分解產氫硫化鋅熱處理
外文關鍵詞: CdS, CBD, CdSe, water splitting, ZnS, thermal-treatment
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用化學浴沈積法(Chemical Bath Deposition, CBD)將硫化鎘(CdS)和硒化鎘(CdSe)組裝至TiO2薄膜表面作為光敏化劑應用於光電化學系統進行水分解製氫。研究中探討敏化劑吸附量與其共敏化效應對電極光學性質及光電轉換效率之影響;結果顯示CdS與CdSe在吸光範圍具有不錯的互補效應,但由於兩者導帶及價帶相對位置的關係,使敏化劑組裝順序對電極效能有極大的影響。TiO2/CdS(4)/CdSe(4)的電極結構在能階位置上呈現順向階梯狀,有助於電子、電洞的分離;最佳的光電流密度值~15 mA/cm2(AM 1.5G, UV cut-off, 100mW/cm2),電極效率為7.4 %。此外,在最佳條件電極外部再沈積上硫化鋅(ZnS)作為保護層,可增加電極穩定性,並減少漏電流的發生,使水分解產氫速率可達210 umol.cm-2.h-1。進一步以熱處理製程減少敏化材料與TiO2薄膜間接觸界面的缺陷,提升敏化材料結晶性與電子傳導能力;在300℃和150℃熱處理溫度下,TiO2/CdS(4)300℃/CdSe(4)150℃最佳光電流密度為17 mA/cm2,電極效率為10.6 %。

    These studies utilize the method of chemical bath deposition (CBD) to assemble, CdS and CdSe onto porous TiO2 films as sensitizer for photoelectrochemical hydrogen generation. The sensitizer incorporated amount and co-sensitized effect on photoelectrochemical conversion efficiency were discussed in this study. The results show that the CdS/CdSe co-sensitized photoelectrode has not only a complementary effect in light harvest and the cascade structure, TiO2/CdS(4)/CdSe(4), but leads to a stepwise structure of band-edge levels which is advantageous to the electron injection and hole-recovery of the system. The energy conversion efficiency (ECE) achieved by the TiO2/CdS(4)/CdSe(4) electrode under illumination (AM1.5, UV cut-off, 100 mW/cm2) is 7.4%. Zinc Sulfide (ZnS) was further deposited as passivation layer to improve the photoelectrode stability and reduce leakage current. The corresponding hydrogen evolved rate measured for the TiO2/CdS(4)/ CdSe(4)/ZnS electrode is 210 µmol.cm-2.h-1. Further, thermal-treatment process was used to improve TiO2/sensitizer interface and increase sensitizer crystallinity, the electron transfer ability of photoelectrodes and decrease the electrode defects. At the temperature of 300℃ and 150℃, the electrode TiO2/CdS(4)300℃/CdSe(4)150℃ had the highest photocurrent density about 17 mA/cm2 and ECE is 10.6%.

    中文摘要 I ABSTRACT II 謝誌 III 本文目錄 V 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 再生能源於產氫研究之簡介 3 1-3 光觸媒催化原理介紹 10 1-4 實驗研究與目的 13 第二章 理論原理及文獻回顧 16 2-1 光電化學電池(PHOTOELECTROCHEMICAL CELL, PEC) 16 2-1.1 工作電極(working electrode, WE) 17 2-1.2 對電極(counter electrode, CE) 17 2-1.3參考電極(reference electrode, RE) 18 2-2 光電化學電池之水分解反應與原理 19 2-3半導體電極特性 25 2-3.1各類型半導體吸光元件之運作原理 27 2-4 化學浴沈積法組裝光敏化材料 30 2-5 光電極之電性量測 32 2-5.1 光電流量測與效率計算 32 2-5.2 燈源(light source) 35 第三章 實驗設備與藥品 37 3-1 儀器設備 37 3-2 實驗耗材與藥品 49 3-3 實驗流程 51 3-3.1 透明導電玻璃清潔(Transparent conductive oxide, TCO) 52 3-3.2 二氧化鈦膠體溶液配製 54 3-3.3 二氧化鈦薄膜製備 54 3-3.4 光敏化材料於TiO2薄膜上的吸附組裝 55 3-3.5 電解液配製 58 3-3.6 電化學電池之電性量測 60 第四章 實驗結果與討論 62 4.1 TIO2薄膜特性分析 62 4-2 光敏化材料於TIO2薄膜上的吸附行為與光學特性分析 65 4-2.1 CdS敏化材料之光學特性分析 65 4-2.2 CdSe敏化材料之光學特性分析 67 4-2.3 CdS與CdSe共敏化系統之光學特性分析 69 4-3 光敏化電極之效能量測 72 4-3.1 TiO2/CdS電極之光電流量測 72 4-3.2 TiO2/CdSe電極之光電流量測 73 4-3.2 TiO2/CdSe電極之光電流量測 74 4-3.3 TiO2/CdS/CdSe共敏化電極之光電流量測 76 4-3.4 TiO2/CdSe/CdS共敏化電極之光電流量測 78 4-4 不同敏化電極之光電轉換效率與機制探討 79 4-4.1 光電轉換效率量測(IPCE) 80 4-4.2 電極之能階機制推測探討 82 4-4.3 ZnS保護層之特性探討 84 4-5 光電極熱處理效應探討 90 4-5 光電極熱處理效應探討 91 4-5.1 單一敏化材電極熱處理之光學特性 91 4-5.2 單一敏化材熱處理之效能量測 94 4-5.3 複合電極熱處理之光學特性與效能量測 98 4-5.4 光電極熱處理之XRD量測 101 4-6 光電極產氫能力比較 104 第五章 結論 108 第六章 未來工作與建議 110 參考文獻 112 作者自述 119

    參考文獻
    1. NASA. NASA Study Finds World Warmth Edging Ancient Levels. 2006; Available from: http://www.nasa.gov/vision/earth/environment/world_warmth.html.
    2. Mitsugi, C., A. Harumi, and F. Kenzo, WE-NET: Japanese hydrogen program. International Journal of Hydrogen Energy, 1998. 23(3): p. 159-165.
    3. Thomas, C.E., B.D. James, and F.D. Lomax, Market penetration scenarios for fuel cell vehicles. International Journal of Hydrogen Energy, 1998. 23(10): p. 949-966.
    4. Veziroglu, T.N., Dawn of the hydrogen age. International Journal of Hydrogen Energy, 1998. 23(12): p. 1077-1078.
    5. Morgan D, S.F., The Committee for the National Institute for the Environment, R.f.C. Congressional Research Service, Editor. April 1995: Washington DC 20006-1401. p. 28.
    6. The Economist Technology. 2001. p. 29.
    7. Ajay K. Ray, A.A.C.M.B., Novel photocatalytic reactor for water purification. AIChE Journal, 1998. 44(2): p. 477-483.
    8. US Department of Energy, N.R.E.L., Hydrogen the fuel for the future. 1995.
    9. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    10. Bak, T., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy, 2002. 27(10): p. 991-1022.
    11. Nowotny, J., Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy, 2005. 30(5): p. 521-544.
    12. Nowotny, J., Titanium dioxide for solar-hydrogen I. Functional properties. International Journal of Hydrogen Energy, 2007. 32(14): p. 2609-2629.
    13. Marchetti, C., Chem. Econ. & Eng. Rev. 5, 1973: p. 7.
    14. Schober, T., Tubular high-temperature proton conductors: transport numbers and hydrogen injection. Solid State Ionics, 2001. 139(1-2): p. 95-104.
    15. Matsumoto, H., Extraction and production of hydrogen using high-temperature proton conductor. Solid State Ionics, 2002. 152-153: p. 715-720.
    16. Balachandran, U., Use of mixed conducting membranes to produce hydrogen by water dissociation. International Journal of Hydrogen Energy, 2004. 29(3): p. 291-296.
    17. Huang, C., Raissi, A., Analysis of New Solar Thermochemical Water Splitting Cycle for Hydrogen Production, in 15th Hydrogen Energy Conference. 2004: Yokohama, Japan.
    18. 曲新生、呂錫民、陳發林, 產氫與儲氫技術 The hydrogen production and storage technology 2007, Taipei: 五南.
    19. 蘇俊鐘. 光觸媒(Photocatalyst). 2003; Available from: http://nano.nchc.org.tw/dictionary/photocatalyst.html.
    20. Akihiko Kudo, H.K., and Issei Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting
    Chemistry Letters, 2004. 33: p. 1534-1539.
    21. Kudo, A., Photocatalyst Materials for Water Splitting Catalysis Surveys from Asia, 2003. 7: p. 31-38.
    22. Wikipedia. Solar Spectrum. Available from: http://en.wikipedia.org/wiki/File:Solar_Spectrum.png.
    23. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    24. Houlihan, J.F., J.R. Hamilton, and D.P. Madacsi, Improved solar efficiencies for doped polycrystalline TiO2 photoanodes. Materials Research Bulletin, 1979. 14(7): p. 915-920.
    25. Khan, S.U.M., M. Al-Shahry, and W.B. Ingler, Jr., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 2002. 297(5590): p. 2243-2245.
    26. Maeda, K. and K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C, 2007. 111(22): p. 7851-7861.
    27. Allen J. BARD, L.R.F., Electrochemical Methods Fundamentals and Applications 2nd ed. 2001: WILEY.
    28. Gur, I., Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution. Science, 2005. 310(5747): p. 462-465.
    29. Breen, M.L., Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films. Chemistry of Materials, 1998. 10(3): p. 710-717.
    30. Paul O'Brien , J.M., Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS. J. Mater. Chem., 1998. 8: p. 2309 - 2314.
    31. Haram, S.K. and A.J. Bard, Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interfaces. The Journal of Physical Chemistry B, 2001. 105(34): p. 8192-8195.
    32. Blackburn, J.L., D.C. Selmarten, and A.J. Nozik, Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition. The Journal of Physical Chemistry B, 2003. 107(51): p. 14154-14157.
    33. Collier, C.P., Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science, 1997. 277(5334): p. 1978-1981.
    34. Pan, Z.Y., Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation. The Journal of Physical Chemistry B, 1997. 101(47): p. 9703-9709.
    35. Jiang, P., Z.-F. Liu, and S.-M. Cai, Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate. Langmuir, 2002. 18(11): p. 4495-4499.
    36. Samokhvalov, A., Electronic Properties of Hybrid Organic/Inorganic Langmuir−Blodgett Films Containing CdS Quantum Particles. The Journal of Physical Chemistry B, 2002. 106(35): p. 9070-9078.
    37. Samokhvalov, A., Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic−Inorganic Films. The Journal of Physical Chemistry B, 2003. 107(18): p. 4245-4252.
    38. Sastry, M., M. Rao, and K.N. Ganesh, Electrostatic Assembly of Nanoparticles and Biomacromolecules. Accounts of Chemical Research, 2002. 35(10): p. 847-855.
    39. Lahav, M., Photoelectrochemistry with Integrated Photosensitizer−Electron Acceptor and Au-Nanoparticle Arrays. Journal of the American Chemical Society, 2000. 122(46): p. 11480-11487.
    40. L. Sheeney-Haj-Ichia, S.P., Y. Gofer, I. Willner,, Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers. Advanced Functional Materials, 2004. 14(5): p. 416-424.
    41. Laila Sheeney-Haj-Ichia, B.B., Itamar Willner,, Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes13. Angewandte Chemie International Edition, 2005. 44(1): p. 78-83.
    42. Besson, S., 3D Quantum Dot Lattice Inside Mesoporous Silica Films. Nano Letters, 2002. 2(4): p. 409-414.
    43. Ma, X.-D., Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature. Journal of Colloid and Interface Science, 2002. 252(1): p. 77-81.
    44. Mane, R.S., Improved performance of dense TiO2/CdSe coupled thin films by low temperature process. Electrochimica Acta, 2005. 50(12): p. 2453-2459.
    45. Niitsoo, O., Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 181(2-3): p. 306-313.
    46. Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. The Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
    47. James R. Darwent , G.P., Photochemical hydrogen production using cadmium sulphide suspensions in aerated water. Journal of the Chemical Society, Chemical Communications 1981: p. 145 - 146.
    48. Kuppuswamy Kalyanasundaram, E.B., Michael Gratzel,, Visible Light Induced Water Cleavage in CdS Dispersions Loaded with Pt and RuO2, Hole Scavenging by RuO2. Helvetica Chimica Acta, 1981. 64(1): p. 362-366.
    49. A. Hanglein , M.G.B.B., Phys. Chem., 1983. 87: p. 852.
    50. Serpone, N., Effect of CdS preparation on the photo-catalyzed decomposition of hydrogen sulfide in alkaline aqueous media. Inorganica Chimica Acta, 1984. 90(3): p. 191-196.
    51. Savinov, E.N., Y.A. Gruzdkov, and V.N. Parmon, Suspensions of semiconductors with microheterojunctions--A new type of highly efficient photocatalyst for dihydrogen production from solution of hydrogen sulfide and sulfide ions. International Journal of Hydrogen Energy, 1989. 14(1): p. 1-9.
    52. Sabat, J., A comparative study of semiconductor photocatalysts for hydrogen production by visible light using different sacrificial substrates in aqueous media. International Journal of Hydrogen Energy, 1990. 15(2): p. 115-124.
    53. Wolfgang Hetterich, H.K., HETEROGENEOUS PHOTO CATALYSIS–VII. THE INFLUENCE OF ZINC IONS ON THE PHOTOCATALYTIC PROPERTIES OF PLATINIZED CADMIUM SULFIDE. Photochemistry and Photobiology, 1990. 52(4): p. 631-635.
    54. De, G.C., A.M. Roy, and S.S. Bhattacharya, Photocatalytic production of hydrogen and concomitant cleavage of industrial waste hydrogen sulphide. International Journal of Hydrogen Energy, 1995. 20(2): p. 127-131.
    55. Jasieniak, J. and P. Mulvaney, From Cd-Rich to Se-Rich - the Manipulation of CdSe Nanocrystal Surface Stoichiometry. Journal of the American Chemical Society, 2007. 129(10): p. 2841-2848.
    56. 羅亦修, 硫化鎘/硒化鎘之兆增感效應在量子點敏化太陽能電池的應用, in 化學工程學系. 2008, 國立成功大學: 台灣.
    57. Yu, W.W., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials, 2003. 15(14): p. 2854-2860.
    58. Spanhel, L., Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society, 1987. 109(19): p. 5649-5655.
    59. Yang, S.-m., High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry, 2002. 12(5): p. 1459-1464.
    60. Goudarzi, A., Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells. Thin Solid Films, 2008. 516(15): p. 4953-4957.
    61. Zelaya-Angel, O., Band-gap shift in CdS: phase transition from cubic to hexagonal on thermal annealing. Vacuum, 1995. 46(8-10): p. 1083-1085.
    62. Rincón*, M.E., Photoelectrochemical behavior of chemically deposited CdSe and coupled CdS/CdSe semiconductor films. Solar Energy Materials and Solar Cells, 1998. 52(3-4): p. 399-411.
    63. Rinc'on*, M.E., Thermal treatment effects in the photovoltaic conversion of spray-painted TiO2 coatings sensitized by chemically deposited CdSe thin films. Solar Energy Materials and Solar Cells, 2001. 70(2): p. 163-173.
    64. Sathish, M. and R.P. Viswanath, Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support. Catalysis Today, 2007. 129(3-4): p. 421-427.
    65. Hankare, P.P., Comparative study of zinc selenide photoelectrode annealed at different temperatures. Solid State Sciences, 2008. 10(12): p. 1970-1975.
    66. Yun, H., Low-temperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection. Applied Surface Science, 2008. 255(5): p. 2113-2117.
    67. Fujishima, A., K. Kohayakawa, and K. Honda, Hydrogen Production under Sunlight with an Electrochemical Photocell. Journal of The Electrochemical Society, 1975. 122(11): p. 1487-1489.
    68. Houlihan, J.F., Improved solar energy conversion efficiencies for the photocatalytic production of hydrogen via TiO2 semiconductor electrodes. Materials Research Bulletin, 1976. 11(9): p. 1191-1197.

    下載圖示 校內:2010-07-07公開
    校外:2010-07-07公開
    QR CODE