| 研究生: |
黃詩吟 Huang, Shih-Yin |
|---|---|
| 論文名稱: |
摻雜銀奈米粒子於有機高分子太陽能電池之研究 The Study of Polymer Solar Cells Doped with Silver Nanoparticles |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 有機高分子太陽能電池 、銀奈米粒子 |
| 外文關鍵詞: | Polymer solar cells, Silver nanoparticles |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為混摻銀奈米粒子於高分子主動層材料中來提升有機高分子太陽能電池的光電轉換效率,實驗可分成兩部分,第一部分為合成以油酸為保護劑的銀奈米粒子,油酸的長碳鏈結構使奈米銀可以均勻分散在有機溶劑中,有助銀奈米粒子混摻在高分子主動層溶液中。第二部分添加銀奈米粒子於有機高分子太陽能電池,分別以兩種高分子(P3HT和PFTpBt)與PCBM混合,再添加不同濃度的銀奈米粒子來製造總體異質接面(bulk-heterojunction)有機高分子太陽能元件,混摻銀奈米粒子的元件光電轉換效率可以提升 50~70 %。根據載子遷移率量測(SCLC)以及紫外光-可見光吸收光譜分析的結果,主要原因是因為銀奈米粒子可以增加載子遷移率以及幫助光吸收,使得元件整體光電轉換效率增加。
In this study, we enhanced the power conversion efficiency of polymer solar cells by incorporating silver nanoparticles in the active layer. The experiments can be divided into two parts. The first section is to synthesize silver nanoparticles capped with oleic acid. The oleic acid with long carbon chain makes silver nanoparticles disperse in the organic solvent well. The second section is to fabricate bulk-heterojunction solar cells by blending silver nanoparticles into different active layers(P3HT:PCBM and PFTpBt:PCBM)with different concentrations. Doped devices showed 50~70 % improvements in efficiency. According to the measurement of carrier mobility (SCLC) and UV - Visible absorption spectra, the improved efficiency of the doped devices was originated from the increased carrier mobility and the enhancement of active layer absorption.
1. P. B. Weisz, “Basic Choices and Constraints on Long-Term Energy Supplies”, Physics Today, 47(2004).
2. A. A. Bartlett, “Sustained Availability: A Management Program for Non-Renewable Resources”, American Journal of Physics, 54, 398(1986).
3. 張正華,李陵嵐,葉楚平,楊平華,有機與塑膠太陽能電池,五南出版社,2008 年。
4. D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25, 676(1954).
5. B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737(1999).
6. M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338(2001).
7. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Am. Chem. Soc., 127 , 16835(2005).
8. S. Gunes, H. Neugebauer, N. S. Sariciftci, “Conjugated Polymer-Based Organic Solar Cells”, Chem. Rev., 107, 1324(2007).
9. S. E. Shaheen, D. S. Ginley, G. E. Jabbour, “Organic-based photovoltaics toward low-cost power generation”, MRS Bull., 30, 10 (2005).
10. S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing”, Appl. Phys. Lett., 79, 2996( 2001).
11. J. Bharathan, Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo”, Appl. Phys. Lett., 72, 2660(1998).
12. C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen, N. S. Sariciftci, “Realization of Large Area Flexible Fullerene - Conjugated Polymer Photocells: A Route to Plastic Solar Cells”, Synth. Met., 102, 861(1999).
13. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”, Science, 295, 2425( 2002).
14. B. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff, N. C. Greenham, “Vertically segregated hybrid blends for photovoltaic devices with improved efficiency”, J. Appl. Phys., 97, 014941(2005).
15. C. Y. Kwong, A. B. Djurišić, P. C. Chui, K. W. Cheng, W. K. Chan, “Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells”, Chem. Phys. Lett., 384 , 372(2004).
16. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nat. Mater., 4, 138(2005).
17. D. Qi, M. Fischbein, M. Drndic, S. Selmic, “Efficient polymer-nanocrystal quantum-dot photodetectors”, Appl. Phys. Lett., 86, 093103(2005).
18. E. Arici, N.S. Sariciftci, D. Meissner, “Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices”, Adv. Funct. Mater., 13, 165(2003).
19. K. Kim, D. L. Carroll, “Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices”, Appl. Phys. Lett., 87, 203113 (2005).
20. M. Y. Chang, Y. F. Chen, Y. S. Tsai, K. M. Chi, “Blending Platinum Nanoparticles into Poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric Acid Methyl Ester Enhances the Efficiency of Polymer Solar Cells”, Journal of The Electrochemical Society, 156 , B234( 2009).
21. H. Shirakawa, “The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2574 (2001).
22. A.G. MacDiarmid, “Synthetic Metals : A Novel Role for Organic Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2581(2001).
23. A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2591 (2001).
24. J. H. Schön, A. Dodabalapur, Z. Bao, C. Kloc, O. Schenker, B. Batlogg, “Gate-induced superconductivity in a solution-processed organic polymer film”, Nature, 410, 189(2001).
25. R. L. Greene, G. B. Street, L. J. Suter, “Superconductivity in Polysulfur Nitride (SN)X”, Phys. Rev. Lett., 34, 577(1975).
26. 陳壽安,導電高分子:新世代光電材料,物理雙月刊,312-321,2001 年。
27. J. J. Dittmer, E. A. Marseglia, R. H. Friend, “Electron Trapping in Dye/Polymer Blend Photovoltaic Cells”, Adv. Mater., 17, 1270 (2000).
28. P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126(2001).
29. H. Hoppe, N. S. Sariciftci, “Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results”, J. Mater. Res., 19, 1924(2004).
30. J. Y. Kim, A. J. Bard, “Organic Donor/Acceptor Heterojunction Photovoltaic Devices based on Zinc Phthalocyanine and a Liquid Crystalline Perylene Diimide”, Chem. Phys. Lett., 383, 11(2004).
31. W. Cai, X. Gong, Y. Cao, “Polymer Solar Cells: Recent Development and Possible Routes for Improvement of Power Conversion Efficiency”, Solar Energy Materials & Solar Cells, 94,114(2010).
32. 楊明崙,新型低能隙含拉電子側基共聚物之合成及其在太陽能電池之應用,國立成功大學材料科學及工程學系,碩士論文,2010年。
33. M. G. Helander, Z. B. Wang, J. Qiu, Z. H. Lu, “Band alignment at metal/organic and metal/oxide/organic interfaces”, Appl. Phys. Lett., 93, 19(2008).
34. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1996.
35. K. Sakayori, Y. Shibasaki, M. Ueda, “Synthesis of a novel high sensitive photo-radical initiator with good thermal stability based on naphthalic-1,8-N-alkylimide derivatives”, Polym. Sci. Part A, 43, 5571(2005).
36. K. Nakaya, K. Funabiki, H. Muramatsu, K. Shibata, M. Matsui, “N-Aryl-1,8-naphthalimides as highly sensitive fluorescent labeling reagents for carnitine”, Dyes and Pigments, 43, 235(1999).
37. B. A. Gregg, “The photoconversion mechanism of excitonic solar cells”, MRS Bull., 30, 20(2005).
38. 林宇君,新型低能隙聚芴系共聚物之合成及其在太陽能電池之應用,國立成功大學材料科學及工程學系,碩士論文,2009 年。
39. A. K. Ghosh, T. Feng, “Merocyanine organic solar cells”, J. Appl, Phys, 49, 5982(1978).
40. 陳建華,p 型透明導電膜應用於有機發光二極體,國立成功大學化學工程研究所,碩士論文,2003 年。
41. C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183(1986).
42. H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene”, Nature, 318, 162(1985).
43. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/ C60 heterojunction photovoltaic cell”, Appl. Phys. Lett., 68, 3120(1996).
44. G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity”, Appl. Phys. Lett., 64, 3422(1994).
45. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives”, J. Org. Chem., 60, 532(1995).
46. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A.J. Heeger, “Polymer Photovoltaic Cells : Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 1789(1995).
47. http://www.solarmer.com/
48. R. A. J. Janssen, J. C. Hummelen, N. S. Saricftci, “Polymer-fullerene bulk heterojunction solar cells”, MRS Bull., 30, 33(2005).
49. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett., 78, 841(2001).
50. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal, R. A. J. Janssen, “Efficient Methano [70] fullerene/ MDMO-PPV Bulk Hetero-junction Photovoltaic Cells”, Angew. Chem. Int. Ed., 42, 3371(2003).
51. P. Schilinsky, C. Waldauf, C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors”, Appl. Phys. Lett., 81, 3885(2002).
52. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer”, Adv. Mater., 18, 572(2006).
53. S. Hayashi, “31P Nuclear Magnetic Resonance Study of Local Bonding Configuration of Phosphorus in Amorphous Silicon- Hydrogen-Phosphorus Alloys”, Physics Today, 26, 2041(1987).
54. G. Schmid, B. Corain, “Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities”, Eur. J. Inorg. Chem., 3081( 2003).
55. 盧永坤,奈米科技概論,滄海書局,2005 年。
56. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, “Metal nanoparticles and their assemblies”, Chem. Soc. Rev., 29, 27(2000).
57. J. Yguerabide, E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications”, Analytical Biochemistry, 262, 137(1998).
58. K. P. Charlé, F. Frank, W. Schulze, “The optical properties of silver microcrystallites in dependence on size and the influence of the matrix environment”, Ber. Bunsen-Ges. Phys. Chem. 88, 350(1984).
59. S. Link, M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals”, International Reviews in Physical Chemistry, 19, 409(2000).
60. H. K. Park, J. K. Yoon, K. Kim, “Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering”, Langmuir, 22, 1626(2006).
61. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, Journal of Chemical Physics, 116, 6755(2002).
62. M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles”, J. Phys. Chem. B, 105, 2343(2001).
63. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, Ann. Phys., 25, 377(1908).
64. L. D. Feldheim, C. A. Foss, Metal nanoparticles: synthesis, characterization, and applications , Marcel Dekker, New York, 2002.
65. S. Nie, R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 275, 1102(1997).
66. S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells”, J. Appl. Phys., 101, 093105(2007).
67. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons”, Appl. Phys. Lett., 88, 161102(2006).
68. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, F. Lederer, “Rugate filter for light-trapping in solar cells”, Opt. Expr., 16, 9332 (2008).
69. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”, Appl. Phys. Lett., 86, 063106(2005).
70. Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells”, J. Vac. Sci. Technol. B, 25, 6(2007).
71. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T.Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles”, Appl. Phys. Lett., 89, 093103(2006).
72. 莊萬發,超微粒子理論應用,復漢出版社,1995 年。
73. 蘇品書,超微粒子材料技術,復漢出版社,1989 年。
74. M. T. Reetz, S. A. Quaiser, “A New Method for the Preparation of Nanostructured Metal Clusters”, Angew. Chem. Int. Ed., 34, 2240 (1995).
75. S. Remita, M. Mostafavi, M. O. Delcourt, J. Belloni, “Ligand effects on solvated metal cluster properties”, Journal de Chimie Physique et de Physico-Chimie Biologique, 93, 1828(1996).
76. A. J. Morfa, K. L. Rowlen, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics”, Appl. Phys. Lett., 92, 013504(2008).
77. W. J. Yoon, K. Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, P. R. Berger, “Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles”, Solar Energy Materials & Solar Cells, 94, 128(2010).
78. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, C. S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk-Heterojunction Solar Cells”, ACS Nano, 5, 959(2011).
79. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms”, Nano Lett., 10, 1501 (2010).
80. C. H. Kim, S. H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov, S. H. Jin, “Silver Nanowire Embedded in P3HT: PCBM for High-Efficiency Hybrid Photovoltaic Device Applications”, ACS Nano, 5, 3319(2011).
81. P. I. Lee, L. C. Hsu, J. F. Lee, “Efficient bulk heterojunction solar cells with copolymers based on fluorene, dithienylbenzothiadiazole and derivatives of thiophene”, Solar Energy Materials & Solar Cells, 95, 1756(2011).
82. J. F. Morin, N. Drolet, Y. Tao, M. Leclerc, “Syntheses and Characterization of Electroactive and Photoactive 2,7-Carbazolenevinylene-Based Conjugated Oligomers and Polymers”, Chem. Mater., 16, 4619(2004).
83. N. Drolet, J. F. Morin, N. Leclerc, S. Wakim, Y. Tao, M. Leclerc, “2,7-Carbazolenevinylene-Based Oligomers Thin Film Transistors: High Mobility through Structural Ordering”, Adv. Funct. Mater., 15, 1671(2005).
84. L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells”, Appl. Phys. Lett., 88, 093511(2006).
85. T. Y. Chu, O. K. Song, “Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents”, Appl. Phys. Lett., 90, 203512(2007).
86. Y. T. Chang, S. L. Hsu, M. H. Su, K. H. Wei, “Intramolecular donor–acceptor regioregular poly(hexylphenanthrenyl-imidazole thiophene) exhibits enhanced hole mobility for heterojunction solar cell applications”, Adv. Mater., 21, 2093(2009).
87. P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, “Electron and hole transport in poly(p‐phenylene vinylene) devices”, Appl. Phys. Lett., 68, 3308(1996).
88. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, “Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes”, J. Appl. Phys., 93, 6159(2003).
89. S. K. M. Jönsson, E. Carlegrim, F. Zhang, W. R. Salaneck, M. Fahlman, “Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: the role of LiF”, Jpn. J. Appl. Phys., 44, 3695(2005).
90. T. Mori, H. Fujikawa, S. Tokito, V. Taga, “Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy”, Appl. Phys. Lett., 73, 2763(1998).
91. L. H. Tjeng, R. Hesper, A. C. L. Heessels, A. Heeres, H. T. Jonkman, G. A. Sawatzky, “Development of the electronic structure in a K-doped C60 monolayer on a Ag(111) surface”, Solid State Commun., 1997, 103, 31.
92. M. R. C. Hunt, S. Modesti, P. Rudolf, R. E. Palmer, “Charge transfer and structure in C60 adsorption on metal surfaces”, Phys. Rev. B, 51, 10039(1995).
93. C. Tanase, E. J. Meijer, P. W. M. Blom, D. M. de Leeuw, “Unification of the Hole Transport in Polymeric Field-Effect Transistors and Light-Emitting Diodes”, Phys. Rev. Lett., 91, 216601(2003).
94. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, 401, 685(1999).
95. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. S. Liu, J. M. J. Frechet, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight”, Adv. Mater., 15, 1519(2003).
96. Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, “Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole)”, Chem. Mater., 16, 4812(2004).
97. C. P. Vinod, G. U. Kulkarni, C. N. R. Rao, “Size-dependent changes in the electronic structure of metal clusters as investigated by scanning tunneling spectroscopy”, Chem. Phys. Lett., 289, 329(1998)
98. J. Szeremeta, M. Nyk, A. Chyla, W. Strek, M. Samoc, “Enhancement of photoconduction in a conjugated polymer through doping with copper nanoparticles”, Optical Materials, 1372(2011).
99. Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells”, Adv. Funct. Mater., 18, 1783(2008).
校內:2021-12-31公開