| 研究生: |
郭任偉 Kuo, Jen-Wei |
|---|---|
| 論文名稱: |
利用兩階段複製策略增強PCR-TRFLP分析油污染土壤菌群的社會結構 Improvement of Terminal Restriction Fragment Length Polymorphism to Analyze Microbial Community of Oil Contaminated Soil Using Two-stage PCR Amplification |
| 指導教授: |
曾怡禎
Tseng, I-cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 兩階段聚合酵素鏈鎖反應(Two-stage PCR) 、末端螢光片段限制酵素片段長度多型性分析法(T-RFLP) 、16S rRNA clone library 、油分解菌 |
| 外文關鍵詞: | 16S rRNA gene clone library, petroleum-degrading bacteria, Two-stage PCR, terminal restriction fragment length polymorphis |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物復育是近年備受關注的一門環境復育技術,微生物社會結構之分析則是了解其作用機制不可或缺的部份。本研究樣本取自台灣南部LY、YK、FD、KS和KT等石油污染場址,以傳統微生物培養與分子生物學的方法,來探討油污染場址的微生物社會結構。從各場址建立的16S rRNA基因選殖資料庫,可發現彼此間微生物社會結構有極大的差異,各場址均有特定的菌群存在,其中β-proteobacteria又可依五處場址分成五組不同的小群。LY場址是一個污染較久場址,其微生物社會組成和目前已知的油污染分解菌均不同,大多屬於uncultured α-、β-和γ-proteobacteria,而YK場址則以β-proteobacteria的Burlkhoderia菌屬較多。在油污染場址16S rRNA基因選殖資料庫中,與油分解相關的OTUs(operational taxonomic units)共有21個,其中YK廠址以Pseudomonas與Burlkhoderia菌屬所佔比例最大,分別為28.0%和24.5%。本研究以T-RFLP來監測KS(柴油含量較多)與KT(重油含量較多)兩場址在生物復育過程中微生物社會結構的變化,並以nonmetric multidimensional scaling (NMS)統計分析兩場址間微生物社會結構之相似性,可看出兩場址第0天的微生物社會結構差異性大,可能出自於兩者所含油的組成成分不同所致。至於同場址之不同時間點相似性的差異,則顯示出微生物社會結構在生物復育過程中有明顯變化。
關於PCR造成模板與產物菌群比例的偏差方面,本篇發現一般一階段的PCR會造成模板與產物菌群比例的偏差,且當引子與模板有一個鹼基無法配對時,造成的偏差則越大。然而,利用兩階段PCR策略則可減小上述造成的偏差。因此,在以T-RFLP分析微生物社會結構上,此方法可以改善因引子與模板不完全配對造成的模板與產物菌群比例之偏差。
Bioremediation is the most concern technology of environmental remediation in recent year. Analysis of microbial community is indispensable to understand mechanism of bioremediation. The soil samples of this study were from petroleum-contaminated sites, including LY, YK, FD, KS, and KT. We used traditional culture and molecular biology methods to investigate the microbial communities of these sites. In 16S rRNA gene clone libraries of each site, large diversity was found between these microbial communities. Microbes at each site had specific locus in phylogenetic tree of 16S rRNA gene clone libraries. Interestingly, β-proteobacteria could be divided five groups by these five sites. LY site is contaminated longer time. As we known, it had different microbial community from others and most of the microbes here was uncultured α-, β-, and γ-proteobacteria. Meanwhile, most of the microbes in YK was Burlkhoderia. In 16S rRNA gene clone libraries of petroleum-contaminated sites, there were 21 OTUs (operational taxonomic units) related to degradation of petroleum, and YK site had a large fraction of Pseudomonas and Burlkhoderia, 28.0% and 24.5% respectively. This study used T-RFLP to monitor the change of microbial community at KS (more diesel oil) and KT (more heavy oil) sites during bioremediation, and used NMS (nonmetric multidimensional scaling) to analyze the similarity of microbial community. As the result, similarity between the two sites was small in 0 day. It may be caused by the different component of petroleum at two sites. As for the dissimilarity at different time, it suggests that microbial community change obviously in bioremediation.
This study also found that one-stage PCR amplification produced bias of bacterial ratio between templates and products, and the bias increased if there was a mismatch site between primers and templates. Two-stage PCR amplification could diminish the bias. Therefore, in T-RFLP, this method could ameliorate the bias caused by mismatch between primers and templates.
邱憲明。利用傳統培養方法和分子生物方法探討油污染土壤的微生物社會結構。國立成功大學生物學研究所碩士論文。2004。
林裕家。利用變性梯度凝膠電泳與即時定量聚合酵素連鎖反應監測油污染場址在復育過程中微生物社會結構之變化。2006。
趙奎驊。利用傳統培養方法及分子生物方法建立分解多環芳香族碳氫化合物的微生物社會結構並探討其重要分解菌群的角色。2007。
潘柏岑。應用土耕法配合生物添加促進法整治柴油污染土壤之研究。2006。
Aitken, M.D., Stringfellow, W.T., Nagel, R.D., Kazunga, C., and Chen, S.H. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44: 743-752 (1998).
Andreoni, V., and Gianfreda, L. Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76: 287-308 (2007).
Atanga, H.I. Microbial profile of crude oil in storage tanks. Environ Monitor Assess 41: 301-308 (1996).
Atlas, R.M. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45: 180-209 (1981).
Baek, S.H., Kim, K.H., Yin, C.R., Jeon, C.O., Im, W.T., Kim, K.K., and Lee, S.T. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Curr Microbiol 47: 462-466 (2003).
Bakermans, C., and Madsen, E.L. Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification. J Microbiol Methods 50: 75-84 (2002).
Bekins, B.A., Godsy, E.M., and Warren, E. Distribution of Microbial Physiologic Types in an Aquifer Contaminated by Crude Oil. Microb Ecol 37: 263-275 (1999).
Beller, H.R., Kane, S.R., Legler, T.C., and Alvarez, P.J. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36: 3977-3984 (2002).
Berthe-Corti, L., and Bruns, A. The Impact of Oxygen Tension on Cell Density and Metabolic Diversity of Microbial Communities in Alkane Degrading Continuous-Flow Cultures. Microb Ecol 37: 70-77 (1999).
Bhattacharya, D., Sarma, P.M., Krishnan, S., Mishra, S., and Lal, B. Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol 69: 1435-1441 (2003).
Boldrin, B., Tiehm, A., and Fritzsche, C. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59: 1927-1930 (1993).
Boonchan, S., Britz, M.L., and Stanley, G.A. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66: 1007-1019 (2000).
Bosch, R., Garcia-Valdes, E., and Moore, E.R. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245: 65-74 (2000).
Briglia, M., Middeldorp, P.J.M., and Salkinoja-Salonen, M.S. Mineralization performance of Rhodococcus chlorophenolicus strain PEP-1 in contaminated soil simulating site conditions. Soil Biol Biochem 26: 377-385 (1994).
Brown, E.J., and Braddock, J.F. Sheen Screen, a Miniaturized Most-Probable-Number Method for Enumeration of Oil-Degrading Microorganisms. Appl Environ Microbiol 56: 3895-3896 (1990).
Bru, D., Martin-Laurent, F., and Philippot, L. Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl Environ Microbiol 74: 1660-1663 (2008).
Bruheim, P., Bredholt, H., and Eimhjellen, K. Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43: 17-22 (1997).
Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25: 169-193 (2000).
Cavalca, L., Dell'Amico, E., and Andreoni, V. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64: 576-587 (2004).
Chaineau, C.H., Morel, J., Dupont, J., Bury, E., and Oudot, J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227: 237-247 (1999).
Chandler, D.P., Fredrickson, J.K., and Brockman, F.J. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6: 475-482 (1997).
Chang, J.S., Chou, C.L., Lin, G.H., Sheu, S.Y., and Chen, W.M. Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28: 137-144 (2005).
Chhatre, S., Purohit, H., Shankar, R., and Khanna, P. Bacterial consortia for crude oil spill remediation. Water Sci Technol 34: 187-193 (1996).
Churchill, S.A., Harper, J.P., and Churchill, P.F. Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65: 549-552 (1999).
Colores, G.M., Macur, R.E., Ward, D.M., and Inskeep, W.P. Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl Environ Microbiol 66: 2959-2964 (2000).
Connon, S.A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S.J., and Semprini, L. Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7: 165-178 (2005).
Dave, H., Ramakrishna, C., Bhatt, B.D., and Desai, J.D. Biodegradation of slop oil from a petrochemical industry and bioreclamation of slop oil contaminated soil. World J Microbiol Biotechno 10: 653-656 (1995).
Dean-Ross, D., and Cerniglia, C.E. Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46: 307-312 (1996).
Dennis, P., Edwards, E.A., Liss, S.N., and Fulthorpe, R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69: 769-778 (2003).
Desai, J.D., and Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61: 47-64 (1997).
Dutta, T.K., and Harayama, S. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67: 1970-1974 (2001).
Dutton, C.M., Paynton, C., and Sommer, S.S. General method for amplifying regions of very high G+C content. Nucleic Acids Res 21: 2953-2954 (1993).
Eapen, S., Singh, S., and D'Souza, S.F. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25: 442-451 (2007).
Eckford, R.E., and Fedorak, P.M. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. J Ind Microbiol Biotechnol 29: 83-92 (2002).
El Fantroussi, S., and Agathos, S.N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8: 268-275 (2005).
Fang, J., and Barcelona, M.J. Biogeochemical evidence for microbial community change in a jet fuel hydrocarbons-contaminated aquifer. Org Geochem 29: 899-907 (1998).
Farrelly, V., Rainey, F.A., and Stackebrandt, E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61: 2798-2801 (1995).
Fayad, N.M., Edora, R.L., el-Mubarak, A.H., and Polancos, A.B., Jr. Effectiveness of a bioremediation product in degrading the oil spilled in the 1991 Arabian Gulf War. Bull Environ Contam Toxicol 49: 787-796 (1992).
Fortin, N.Y., Mulchandani, A., and Chen, W. Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. Anal Biochem 289: 281-288 (2001).
Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461-2470 (2008).
Franzmann, P.D., Patterson, B.M., Power, T.R., Nichols, P.D., and Davis, G.B. Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acid content and composition. J Appl Bacteriol 80: 617-625 (1996).
Fuenmayor, S.L., Wild, M., Boyes, A.L., and Williams, P.A. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180: 2522-2530 (1998).
Geissdorfer, W., Kok, R.G., Ratajczak, A., Hellingwerf, K.J., and Hillen, W. The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR. J Bacteriol 181: 4292-4298 (1999).
Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25: 386-401 (2001).
Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D., and Jeanthon, C. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54: 427-443 (2005).
Grosser, R.J., Warshawsky, D., and Vestal, J.R. Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57: 3462-3469 (1991).
Hamamura, N., Yeager, C.M., and Arp, D.J. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol 67: 4992-4998 (2001).
Hansen, M.C., Tolker-Nielsen, T., Givskov, M., and Molin, S. Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol Ecol 26: 141-149 (1998).
Hartmann, M., and Widmer, F. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol Ecol 63: 249-260 (2008).
Head, I.M., Jones, D.M., and Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344-352 (2003).
Hendrickx, B., Junca, H., Vosahlova, J., Lindner, A., Ruegg, I., Bucheli-Witschel, M. et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 64: 250-265 (2006).
Hirschorn, S.K., Dinglasan, M.J., Elsner, M., Mancini, S.A., Lacrampe-Couloume, G., Edwards, E.A., and Lollar, B.S. Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ Sci Technol 38: 4775-4781 (2004).
Hormisch, D., Brost, I., Kohring, G.W., Giffhorn, F., Kroppenstedt, R.M., Stackebrandt, E. et al. Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Syst Appl Microbiol 27: 653-660 (2004).
Ijah, U.J.J. Studies on relative capabilities of bacterial and yeast isolates from tropical soils in degrading crude oil. Waste Manage 18: 293-299 (1998).
Ishige, T., Tani, A., Takabe, K., Kawasaki, K., Sakai, Y., and Kato, N. Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68: 1192-1195 (2002).
Jansson, J.K. Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6: 310-316 (2003).
Jasper, D.A. (1994) Bioremediation of agricultural and forestry soils with symbiotic microorganisms. In, pp. 1301-1319.
Jeon, C.O., Park, W., Padmanabhan, P., DeRito, C., Snape, J.R., and Madsen, E.L. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100: 13591-13596 (2003).
Jiang, H.L., Tay, J.H., Maszenan, A.M., and Tay, S.T. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70: 6767-6775 (2004).
Kämpfer, P., Steiof, M., Becker, P.M., and Dott, W. Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site. Microb Ecol 26: 161-188 (1993).
Kainz, P. The PCR plateau phase - towards an understanding of its limitations. Biochim Biophys Acta 1494: 23-27 (2000).
Kanaly, R.A., and Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182: 2059-2067 (2000).
Kastner, M., Breuer-Jammali, M., and Mahro, B. Enumeration and characterisation of the soil microflora from hydrocarbon-contaminated soil sites able to mineralise polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41: 167-173 (1994).
Kastner, M., Breuer-Jammali, M., and Mahro, B. Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64: 359-362 (1998).
Kazunga, C., and Aitken, M.D. Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 66: 1917-1922 (2000).
Kelley, I., Freeman, J.P., Evans, F.E., and Cerniglia, C.E. Identification of a Carboxylic Acid Metabolite from the Catabolism of Fluoranthene by a Mycobacterium sp. Appl Environ Microbiol 57: 636-641 (1991).
Kent, A.D., and Triplett, E.W. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211-236 (2002).
Khan, A.A., Wang, R.F., Cao, W.W., Doerge, D.R., Wennerstrom, D., and Cerniglia, C.E. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67: 3577-3585 (2001).
Kim, S.B., Brown, R., Oldfield, C., Gilbert, S.C., Iliarionov, S., and Goodfellow, M. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50 Pt 6: 2031-2036 (2000).
Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H., and Takizawa, N. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176: 2439-2443 (1994).
Komukai-Nakamura, S., Sugiura, K., Yamauchi-Inomata, Y., Toki, H., Venkateswaran, K., Yamamoto, S. et al. Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 82: 570-574 (1996).
Kurkela, S., Lehvaslaiho, H., Palva, E.T., and Teeri, T.H. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73: 355-362 (1988).
Lal, B., and Khanna, S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81: 355-362 (1996).
Laurie, A.D., and Lloyd-Jones, G. The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181: 531-540 (1999).
Leahy, J.G., and Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54: 305-315 (1990).
Lee, K.S., Parales, J.V., Friemann, R., and Parales, R.E. Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Ind Microbiol Biotechnol 32: 465-473 (2005).
Lee, N.R., Hwang, M.O., Jung, G.H., Kim, Y.S., and Min, K.H. Physical structure and expression of alkBA encoding alkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia. Biochem Biophys Res Commun 218: 17-21 (1996).
Lueders, T., and Friedrich, M.W. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69: 320-326 (2003).
MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J., and White, D.C. Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65: 3566-3574 (1999).
Mahro, B., Rode, K., and Kasche, V. Non-selective precultivation of bacteria able to degrade different polycyclic aromatic hydrocarbons (PAH). Acta Biotechnologica: 337-345 (1995).
Marin, M.M., Smits, T.H., van Beilen, J.B., and Rojo, F. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183: 4202-4209 (2001).
Mathew, M., Obbard, J.P., Ting, Y.P., Gin, Y.H., and Tan, H.M. Bioremediation of oil contaminated beach sediments with indigenous microorganisms in Singapore. Acta Biotechnol 3: 225-233 (1999).
Maxwell, C.R., and Baqai, H.A. Remediation of petroleum hydrocarbons by inoculation with laboratory-cultured microorganisms. In Bioaugmentation for Site Remediation: 129-137 (1995).
McGugan, B.R., Lees, Z.M., and Senior, E. Bioremediation of an oil-contaminated soil by fungal intervention. In Bioaugmentation for Site Remediation: 149-156 (1995).
Miller, D.N., Bryant, J.E., Madsen, E.L., and Ghiorse, W.C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65: 4715-4724 (1999).
Mishra, S., Jyot, J., Kuhad, R.C., and Lal, B. Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67: 1675-1681 (2001).
Mohandass, C., David, J.J., Nair, S., Loka Bharathi, P.A., and Chandramohan, D. Behavior of marine oil-degrading bacterial populations in a continuous culture system. J Mar Biotechnol 5: 168-171 (1997).
Moller, J., Gaarn, H., Steckel, T., Wedebye, E.B., and Westermann, P. Inhibitory effects on degradation of diesel oil in soil-microcosms by a commercial bioaugmentation product. Bull Environ Contam Toxicol 54: 913-918 (1995).
Mueller, J.G., Chapman, P.J., Blattmann, B.O., and Pritchard, P.H. Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56: 1079-1086 (1990).
Neralla, S., Wright, A.L., and Weaver, R.W. Microbial inoculants and fertilization for bioremediation of oil in wetlands. In Bioaugmentation for Site Remediation: 31-38 (1995).
Nohynek, L.J., Nurmiaho-Lassila, E.L., Suhonen, E.L., Busse, H.J., Mohammadi, M., Hantula, J. et al. Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46: 1042-1055 (1996).
Parales, R.E., Lee, K., Resnick, S.M., Jiang, H., Lessner, D.J., and Gibson, D.T. Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182: 1641-1649 (2000).
Pelz, O., Chatzinotas, A., Andersen, N., Bernasconi, S.M., Hesse, C., Abraham, W.R., and Zeyer, J. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch Microbiol 175: 270-281 (2001).
Pritchard, P.H., Mueller, J.G., Rogers, J.C., Kremer, F.V., and Glaser, J.A. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3: 315-335 (1992).
Randall, J.D., and Hemmington, B.B. Evaluation of mineral agar plates for the enumeration of hydrocarbon-degrading bacteria. J Microbiol Methods 20: 103-113 (1994).
Razak, C.N.A., Wang, W.F., Rahman, S.H.S.A., Basri, M., and Salleh, A.B. Isolation of crude oil degrading marine Acinetobacter sp. E11. Acta Biotechnol 3: 213-223 (1999).
Rehmann, K., Noll, H.P., Steinberg, C.E., and Kettrup, A.A. Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36: 2977-2992 (1998).
Reysenbach, A.L., Giver, L.J., Wickham, G.S., and Pace, N.R. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58: 3417-3418 (1992).
Rhee, S.K., Liu, X., Wu, L., Chong, S.C., Wan, X., and Zhou, J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70: 4303-4317 (2004).
Richnow, H.H., Annweiler, E., Michaelis, W., and Meckenstock, R.U. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol 65: 101-120 (2003).
Ridgway, H.F., Safarik, J., Phipps, D., Carl, P., and Clark, D. Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl Environ Microbiol 56: 3565-3575 (1990).
Rittmann, B.E., and Whiteman, R. Bioaugmentation: a coming of age. Water Qual Int 1: 12-16 (1994).
Ron, E.Z., and Rosenberg, E. Natural roles of biosurfactants. Environ Microbiol 3: 229-236 (2001).
Ron, E.Z., and Rosenberg, E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13: 249-252 (2002).
Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D., and Lovley, D.R. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65: 3056-3063 (1999).
Rouviere, P.E., and Chen, M.W. Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading beta-proteobacterium. FEMS Microbiol Lett 227: 101-106 (2003).
Sayler, G.S., Fleming, J.T., and Nivens, D.E. Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Curr Opin Biotechnol 12: 455-460 (2001).
Schleheck, D., Tindall, B.J., Rossello-Mora, R., and Cook, A.M. Parvibaculum lavamentivorans gen. nov., sp. nov., a novel heterotroph that initiates catabolism of linear alkylbenzenesulfonate. Int J Syst Evol Microbiol 54: 1489-1497 (2004).
Silva, E., Fialho, A.M., Sa-Correia, I., Burns, R.G., and Shaw, L.J. Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine. Environ Sci Technol 38: 632-637 (2004).
Simon, M.J., Osslund, T.D., Saunders, R., Ensley, B.D., Suggs, S., Harcourt, A. et al. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127: 31-37 (1993).
Sorkhoh, N.A., al-Hasan, R.H., Khanafer, M., and Radwan, S.S. Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78: 194-199 (1995).
Speight, J.G. The chemistry and technology of petroleum. New York, N.Y.: Marcel Dekker (1991).
Stiner, L., and Halverson, L.J. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68: 1962-1971 (2002).
Story, S.P., Parker, S.H., Kline, J.D., Tzeng, T.R., Mueller, J.G., and Kline, E.L. Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, fluoranthene by Sphingomonas paucimobilis var. EPA505. Gene 260: 155-169 (2000).
Suzuki, M.T., and Giovannoni, S.J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625-630 (1996).
Toledo, F.L., Calvo, C., Rodelas, B., and Gonzalez-Lopez, J. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol 29: 244-252 (2006).
Treadway, S.L., Yanagimachi, K.S., Lankenau, E., Lessard, P.A., Stephanopoulos, G., and Sinskey, A.J. Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51: 786-793 (1999).
Trotha, R., Reichl, U., Thies, F.L., Sperling, D., Konig, W., and Konig, B. Adaption of a fragment analysis technique to an automated high-throughput multicapillary electrophoresis device for the precise qualitative and quantitative characterization of microbial communities. Electrophoresis 23: 1070-1079 (2002).
van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Rothlisberger, M., and Witholt, B. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147: 1621-1630 (2001).
van Gestel, C.A., van der Waarde, J.J., Derksen, J.G., van der Hoek, E.E., Veul, M.F., Bouwens, S. et al. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ Toxicol Chem 20: 1438-1449 (2001).
Van Hamme, J.D., Singh, A., and Ward, O.P. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67: 503-549 (2003).
Van Hamme, J.D., Singh, A., and Ward, O.P. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24: 604-620 (2006).
van Veen, J.A., van Overbeek, L.S., and van Elsas, J.D. Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61: 121-135 (1997).
Venkateswaran, K., and Harayama, S. Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil. Can J Microbiol 41: 767-775 (1995).
Venosa, A.D., Haines, J.R., Nisamaneepong, W., Govind, R., Pradhan, S., and Siddique, B. Efficacy of commercial products in enhancing oil biodegradation in closed laboratory reactors. J Ind Microbiol 10: 13-23 (1992).
Vomberg, A., and Klinner, U. Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89: 339-348 (2000).
Walter, U., Beyer, M., Klein, J., and Rehm, H.-J. Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34: 671-676 (1991).
Wang, B.J., Liu, Y., Jiang, J.T., Liu, B., and Liu, S.J. [Microbial diversity in scorpion intestine (Buthus martensii Karsch)]. Wei Sheng Wu Xue Bao 47: 888-893 (2007).
Wattiau, P., Springael, D., Agathos, S.N., and Wuertz, S. Use of the pAL5000 replicon in PAH-degrading mycobacteria: application for strain labelling and promoter probing. Appl Microbiol Biotechnol 59: 700-705 (2002).
Weissenfels, W.D., Beyer, M., and Klein, J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32: 479-484 (1990).
Widada, J., Nojiri, H., Kasuga, K., Yoshida, T., Habe, H., and Omori, T. Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58: 202-209 (2002).
Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., and Okuyama, H. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49: 415-422 (2004).
Yang, C., Liu, N., Guo, X., and Qiao, C. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265: 118-125 (2006).
Yannarell, A.C., and Triplett, E.W. Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Appl Environ Microbiol 70: 214-223 (2004).
Young, C.C., Ho, M.J., Arun, A.B., Chen, W.M., Lai, W.A., Shen, F.T. et al. Pseudoxanthomonas spadix sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57: 1823-1827 (2007).
Zhong, Q., Zhang, H., Bai, W., Li, M., Li, B., and Qiu, X. Degradation of aromatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp. B2. J Environ Sci Health A Tox Hazard Subst Environ Eng 42: 2111-2116 (2007).