| 研究生: |
黃愉婷 Huang, Yu-Ting |
|---|---|
| 論文名稱: |
陶瓷材料 Ba(Mg1/3Nb2/3)O3 少量添加 Co2+ 之有序化行為研究 Ordering Kinetics of BaMg1/3Nb2/3O3 Ceramics Substituted with Small Amount of Cobalt Ion |
| 指導教授: |
黃啟原
Huang, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 微波介電 、序化 、複合鈣鈦礦 、動力學 |
| 外文關鍵詞: | Microwave dielectric, ordering, complex perovskite, kinetics |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AB’1/3B’’2/3O3 複合鈣鈦礦微波介電材料之品質因子,與 B-site 陽離子有序程度有很大的關聯性。Ba(Mg(1-x)/3Cox/3Nb2/3)O3 材料在 x = 0.05 有最高品質因子,一般認為有序化與熱處理條件有關,但動力學模式較少被研究。本研究以高溫熱處理及淬冷,進行等溫試驗,探討 Ba(Mg(1-x)/3Cox/3Nb2/3)O3 少量取代 (x = 0.01-0.1) 之 1:2 有序化行為。
x = 0.01-0.1 各成分點之有序-無序相轉換溫度以下,1300℃-1600℃ 之溫度區間,隨著熱處理溫度提升及持溫時間的延長,有序程度也隨之上升。由成核成長動力學分析,x = 0.01-0.07 之有序化行為由 diffusion controlled,而 x = 0.1 之有序化行為則為 phase-boundary controlled,在成核成長初期已達到成核飽和,x = 0.01-0.05 隨著 Co2+ 添加量增加,成長速率增加且有序-無序相轉換之活化能有減小的趨勢,在 x = 0.05 有序成長速率達到最大值。研究中也指出隨著Co2+ 添加量增加,domain density 有增加的趨勢,Co2+ 添加量較多有較高的 domain density,可能為 x = 0.07-0.1 序化速率常數下降的原因。
It is believed that there is a connection between quality factor and ordering degree of B-site cation in A(B’1/3B’’2/3)O3. In this research, ordering behavior of Ba(Mg(1-x)/3Cox/3Nb2/3)O3 (x = 0.01-0.1) was studied by annealing and quench at high temperature.
In this studied, ordering degree of Ba(Mg(1-x)/3Cox/3Nb2/3)O3 (x = 0.01-0.1) is increased with increasing temperature and annealing time. The result of kinetic KJMA analysis suggests the order-disorder transformation is diffusion controlled at x = 0.01-0.07 and phase boundary controlled at x = 0.1. The activation energy for order-disorder transformation is reduced and the rate constant of ordering is increased with increasing Co2+ substitution. The max rate constant of ordering is at x = 0.05. The domain density is increased with increasing Co2+ substitution. The higher domain density may be the reason that the rate constant of ordering decreased at x = 0.07-0.1.
[1] T. Kolodiazhnyi, A. Petric, A. Belous, O. V’yunov, and O. Yanchevskij,“Synthesis and Dielectric Properties of Barium Tantalates and Niobates with Complex Perovskite Structure,”J. Mater. Res., 17, 3182-3189, (2002).
[2] A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, C. A. Dutu, M. Feder, C. Plapcianu, F. Lifei, and P. Nita,“Effect of The Sintering Temperature on The Ba(Zn1/3Ta2/3)O3 Dielectric Properties,”J. Eur. Ceram. Soc., 27, 1117-1122, (2007).
[3] E. S. Kim and K. H. Yoon,“Microwave Dielectric Properties of Complex Perovskite Ba(Mg1/3Ta2/3)O3,”Ferroelectrics, 133, 187-192, (1992).
[4] J. H. Paik, S. Nahm, J. D. Bylin, M. H. Kim, and H. J. Lee,“The Effect of Mg Deficiency on The Microwave Dielectric Properties of Ba(Mg1/3Nb2/3)O3 Ceramics,”J. Mater. Sci. Lett., 17, 1777-1780, (1998).
[5] I. Y. Kim, Y. H. Kim, and S. J. Chung,“Ordering and Microwave Dielectric Properties of Ba(Ni1/3Nb2/3)O3 Ceramic,” J. Mater. Res., 12, 518-525, (1997).
[6] 林弘巾,Co2+ 少量取代及非計量比對Ba(Mg1/3Nb2/3)O3 陶瓷材料的晶體結構與微波介電性質之影響,國立成功大學資源工程研究所碩士論文 (2010)。
[7] 陳衍豪,Ba(Mg(1-x)/3Cox/3Nb2/3)O3 陶瓷材料的有序化行為研究,國立成功大學資源工程研究所碩士論文 (2011)。
[8] 林勇名,Ba[Mg(1-x)/3Cox/3Nb2/3]O3 陶瓷材料的結構與微波介電性質,國立成功大學資源工程研究所碩士論文 (2008)。
[9] P. M. Mallinson, J. B. Claridge, M. J. Rosseinsky, and R. M. Ibberson,“High-Temperature Processing of Ba3ZnTa2O9: an In situ Study Using Synchrotron X-ray Powder Diffraction,”Chem. Mater., 19, 4731-4740,(2007).
[10] F. Galasso and J. Pyle, “Preparation and Study of Ordering in A(B'0.33Nb0.67)O3 Perovskite-type Compounds,” J. Phys. Chem., 67, 1561-1562, (1963).
[11] T. Hiuga and K. Matsumoto, “Ordering of Ba(B1/3, B2/31)O3 Ceramics and Their Microwave Dielectric Properties,” Jpn. J. Appl. Phys., 28, 56-58, (1989).
[12] I. T. Kim, Y. H. Kim and S. J. Chung,“Order-Disorder Transition and Microwave Dielectric Properties of Ba(Ni1/3Nb2/3)O3 Ceramics,”Jpn. J. Appl. Phys., 34, 4096-4103, (1995).
[13] K. S. Hong, I. T. Kim and C. D. Kim,“Order-Disorder Phase Formation in the Complex Perovskite Compounds Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,”J. Am. Ceram. Soc., 79, 3218-3224, (1996).
[14] E. Koga, Y. Yamagishi, K. Kakimoto and H. Ohsato, “Order-Disorder Transition and Its Effect on Microwave Quality Factor Q in Ba(Zn1/3Nb2/3)O3 System,”J. Electroceram., 17, 375-379, (2006).
[15] I. Melodetsky and P. K. Davies,“Effect of Ba(Y1/2Nb1/2)O3 and BaZrO3 on The Cation Order and Properties of Ba(Co1/3Nb2/3)O3 Microwave Ceramics,”J. Eur. Ceram. Soc., 21, 2587-2591, (2001).
[16] T. Kolodiazhnyi and A. Petric, “ Synthesis and Dielectric Properties of Barium Tantalates and Niobates with Complex Perovskite Structure,” J. Mater. Res., 17, 3182-3189, (2002).
[17] I. M. Reaney, I. Qazi, and W. E. Lee, “Order–disorder behavior in Ba(Zn1/3Ta2/3)O3,” J. Appl. Phys., 88, 6708-6714, (2000).
[18] Ian M. Reaney, Enrico L. Colla and Nava Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 33, 3984-3990, (1994).
[19] A. Putnis, Introduction to mineral science, Cambridge University Press, (1992).
[20] F. Galasso, Structure and Properties of Perovskite Compounds, Pergamon Press, Headington Hill, Oxford, (1969).
[21] J. Chen, H. M. Chan, and M. P. Harmer, “Ordering Structure and Dielectric Properties of Undoped and La/Na-Doped Pb[Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 72, 593-598, (1989).
[22] 吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會 (1996)。
[23] 余樹楨,晶體之結構與性質,國立編譯館 (1989)。
[24] A. Putnis, Introduction to mineral science, Cambridge University Press, (1992).
[25] P. M. Mallinson, J. B. Claridge, M. J. Rosseinsky, R. M.Ibberson,J. P. Wright, andA. N. Fitch,“High-Temperature Processing of Ba3ZnTa2O9: an In situ Study Using Synchrotron X-ray Powder Diffraction,”Chem. Mater., 19, 4713-4740, (2007).
[26] I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “ Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3,” J. Phys. Chem. Solids, 59, 181-195, (1998).
[27] B. K. Kim, H. Hamaguchi, I. T. Kim, and K. S. Hong, “ Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy,” J. Am. Ceram. Soc., 78 [11], 3117-3120 (1995).
[28] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of Microwave Properties and Normal Vibration Modes of xBa(Mg1/3Ta2/3)O3 - (1-x)Ba(Mg1/3Nb2/3)O3 Ceramics: I. Raman Spectroscopy,” J. Appl. Phys., 94, 3360-3364, (2003).
[29] 鄭雅芳,鈦氧化合物之晶體結構與介電性質及Ba1-xCax(Mg1/3Nb2/3)O3陶瓷材料之結構與微波介電性質,國立成功大學資源工程研究所碩士論文, (2005)。
[30] H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,” Bull. Chem. Soc. Jpn., 60, 3433-3434, (1987).
[31] A. J. Bosman and E. E. Havinga, “Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,” Phys. Rev., 129, 1593–1600 (1963).
[32] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U. S. A. (1990).
[33] D. Kajfez,“Computed Model Field Distribution for Isolated Dielectric Resonators,”IEEE. Trans. MTT, MTT-32, 1609-1616, (1984).
[34] H. M. Rietveld,“Line profiles of neutron powder-diffraction peaks for structure refinement,”Acta. Crystal., 22, 151, (1967).
[35] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
校內:2017-08-07公開