簡易檢索 / 詳目顯示

研究生: 林子軒
Lin, Tzu-Hsuan
論文名稱: 鍺酸鑭基磷灰石結構中鑭配比與摻雜離子之固溶度、晶體結構及離子導電度關係
Crystal Structure and Ionic Conductivity of La/Ge Based Apatite Ionic Conductors with Different La Content and W Dopant
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 固態氧化物燃料電池磷灰石結構鍺酸鑭
外文關鍵詞: SOFC, apatite structure, lanthanum germanate
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由文獻的整理,鍺酸鑭基磷灰石結構中會由於不同的鑭配比,而造成不一樣的結構,使導電度有上升或下降的趨勢,不同的鑭配比會使摻雜進入鍺位置的離子,出現不同的固溶極限。
    本研究利用固態反應法合成導電度高的鎢摻雜鍺酸鑭基電解質材料,藉由不同添加量之W6+ 取代La10-yGe6-xWxO27+x-1.5y中的Ge4+ 的位置,在不同鑭配比下將鎢摻雜入,利用無超出固溶極限的成分及超出固溶極限的成分,繪製出一結構區域圖,同時探討各成分的晶體結構與導電度,並推論出間隙氧離子可能的移動空間。
    實驗結果顯示在La9Ge6-xWxO25.5+x系統中含有第二相La2Ge2O7,當鎢添加量達到x=0.1時,就已超出固溶範圍出現含鎢成分的新雜相;在La10Ge6-xWxO27+x系統中含有微量第二相La2GeO5,當鎢添加量到達x=0.4時,出現含有鎢成分的新雜相La6W2O16,代表其超出固溶範圍,由此得知鍺酸鑭系統會由於鑭配比上升或下降而出現第二相,且系統中鑭配比越高具有越高的固溶度。
    La10Ge6-xWxO27+x系統中,各成分在1450°C/3h的燒結條件下,相對密度可達到98%,此系統隨著摻雜量上升,單位晶胞體積也隨之上升,摻雜量到達 x=0.3時,結構從三斜晶系 (Pī) 轉變成六方晶系 (P63/m),藉由觀察結構內將結構中最大的開口空間La2-O3長邊和導電度進行比較,發現和導電度呈正相關。

    Lanthanum germanate apatite will have different structures due to different lanthanum content, which will cause the conductivity to increase or decrease. The lanthanum content causes ions doped into the Ge4+ site to exhibit different solid solution limits. In this study, the W6+-doped lanthanum germanate powders were synthesized using the solid-state reaction method. The results show that second phase La2Ge2O7 is contained in the La9Ge6-xWxO25.5+x system and second phase La2GeO5 is contained in the La10Ge6-xWxO27+x system. In La9Ge6-xWxO25.5+x system, the formation of the secondary phase La2W1.25O6.75 was obtained in the compositional range of x ≥ 0.1. In La10Ge6-xWxO27+x system, the formation of the secondary phase La6W2O16 was obtained in the compositional range of x ≥ 0.4. After drawing a structure field map of W6+-doped lanthanum germanate system, we can observe that as the lanthanum content increases, the solid solution range increases. Crystal strictures of La10Ge6-xWxO27+x system inducated that x=0, 0.1, 0.2 has a triclinic structure (Pī) and x=0.3 has a hexagonal structure (P63/m). The results of the conductivity of sintered bulks and crystal structure analysis indicate that the longer distance between the La2 and O3 atoms (La2-O3 longer distance) is related to conductivity.

    摘要 I 誌謝XI 目錄XII 表目錄XV 圖目錄XVI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 4 第二章 前人研究及理論基礎 5 2-1 燃料電池 5 2-1-1 燃料電池原理 5 2-1-2 燃料電池種類及優劣 6 2-2 固態氧化物燃料電池 8 2-2-1 固態氧化物燃料電池原理 9 2-2-2 固態氧化物燃料電池之結構及特性 9 2-2-3 固態氧化物燃料電池電解質之晶體結構 11 2-3 磷灰石結構固態電解質 15 2-3-1 磷灰石結構固態電解質之導電機制. 18 2-3-2 磷灰石結構固態電解質之間隙氧移動空間 19 2-4 鍺酸鑭基磷灰石結構電解質 21 2-4-1 鍺酸鑭基電解質研究 21 2-4-2 鍺酸鑭基摻雜分析 22 2-4-3 鍺酸鑭基摻雜固溶度 25 第三章 實驗方法與分析 26 3-1 粉末製備 27 3-1-1 起始粉末 27 3-1-2 鎢摻雜鍺酸鑭基(La10-xGe6-yWyO27-1.5x+y) 粉末製備 27 3-1-3 粉末之熱差/熱重分析 29 3-1-4 粉末煅燒處理 29 3-2 煅燒粉末分析 29 3-2-1 X 光粉末繞射 29 3-2-2 Rietveld refinement method 30 3-2-3 掃描式電子顯微鏡 32 3-2-4 生胚製備 32 3-2-5 生胚燒結收縮測量 33 3-3 燒結體製備 33 3-4 燒結體分析 34 3-4-1 燒結體密度測量 34 3-4-2 X 光繞射儀 34 3-4-3 掃描式電子顯微鏡 35 3-4-4 導電率量測 35 第四章 結果與討論 37 4-1 起始粉末分析 37 4-1-1 粉末結晶相分析 37 4-1-2 粉末微結構分析 38 4-1-3 氧化鑭熱差/熱重分析 39 4-2 粉末熱差/熱重分析 41 4-3 粉末煅燒分析 42 4-3-1 結晶相分析 42 4-3-2 雜相去除 45 4-3-3 Rietveld refinement 46 4-3-4 晶體結構分析 48 4-3-5 間隙氧移動路徑分析 51 4-3-6 微結構分析 56 4-3-7 固溶度分析 59 4-4 燒結體分析 60 4-4-1 燒結收縮量測 60 4-4-2 燒結體密度量測 61 4-4-3 結晶相分析 63 4-4-4 燒結體微結構 64 4-4-5 電性分析 68 4-4-6 鎢摻雜鍺酸鑭系統晶體結構及導電率綜合分析 69 第五章 結論 75 參考文獻 76

    [1] 台灣電力公司資訊揭露,火力營運現況與績效-近10 年火力發電量,
    台灣電力公司, 2020.
    https://www.taipower.com.tw/tc/page.aspx?mid=202&cid=129&cchk=675cea43-9c45-4ae1-80c6-4f18b3b38d8e
    [2] S. Nakayama, H. Aono, and Y. Sadaoka, “Ionic Conductivity of Ln10(SiO4)6O3 (Ln= La, Nd, Sm, Gd and Dy),” Chemistry letters, vol.24, no.6, pp.431-432,1995.
    [3] S. Nakayama, T. Kageyama, H. Aono, and Y. Sadaoka, “Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln= La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb),” Journal of Materials Chemistry, vol.5, no.11, pp.1801-1805, 1995.
    [4] S. Nakayama, and M. Sakamoto, “Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE= La, Pr, Nd, Sm, Gd, Dy),” Journal of the European Ceramic Society, vol.18, no.10, pp.1413-1418, 1998.
    [5] 曾儒雅,鈮摻雜對鍺酸鑭基磷灰石電解質晶體結構之研究,國立成功大學資源工程學系碩士論文,2013。
    [6] 林立武,鎢摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性,國立成功大學資源工程學系碩士論文,2014。
    [7] 林鈺烜,鎳摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性,國立成功大學資源工程學系碩士論文,2015。
    [8] 陳正威,鍺酸鑭基磷灰石離子導體之晶體結構與電性,國立成功大學資源工程學系碩士論文,2016。
    [9] E. Kendrick, and P. Slater, “Synthesis of Ga-doped Ge-based apatites: Effect of dopant and cell symmetry on oxide ion conductivity,” Materials Research Bulletin, vol.43, no.12, pp.3627-3632, 2008.
    [10] C.Guo, T.Cai, W.Zhang, C.Tian, and Y.Zeng, “Synthesis and characterizationof Al3+-doped La9.33Ge6O26 intermediate temperature electrolyte for SOFCs,” Materials Science and Engineering: B, vol.171, no.1-3, pp.50-55,2010.
    [11] S.-F. Wang, Y.-F. Hsu, and W.-J. Lin, “Effects of Nb5+, Mo6+, and W6+ dopants on the germanate-based apatites as electrolyte for use in solid oxide fuel cells,” International journal of hydrogen energy, vol.38, no.27, pp.12015-12023,2013.
    [12] S.-F. Wang, Y.-W. Chen, Y.-F. Hsu, P.-H. Li, and C.-Y. Huang, “Gallium-doped lanthanum germanates as electrolyte material of solid oxide fuel cells,” Journal of the Ceramic Society of Japan, vol.123, no.1436, pp.222-228, 2015.
    [13] S.-F. Wang, Y.-F. Hsu, W.-J. Lin, and K. Kobayashi, “Transition metal-doped lanthanum germanate apatites as electrolyte materials of solid oxide fuel cells,” Solid State Ionics, vol.247, pp.48-55, 2013.
    [14] S. F. Wang, Y. F. Hsu, W. J. Lin, and K. Kobayashi, “Doped Germanate‐Based Apatites as Electrolyte for Use in Solid Oxide Fuel Cells,” Fuel Cells, vol.14,no.2, pp.144-152, 2014.
    [15] A. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface,” Renewable & Sustainable Energy Reviews, vol.13, no.9, pp.2430-2440, Dec. 2009.
    [16] 湯智羽、蔡淑儀、方冠榮,屎灰復燃─綠能燃料電池的發展,科學發展564 期,p. 38,2019 年 12 月。
    https://ejournal.stpi.narl.org.tw/sd/download?source=1081207.pdf&vlId=81c00b94ab824d3f8bae19957ea839e0&nd=1&ds=1
    [17] 陽哲化,固態氧化物燃料電池 (SOFC) 原理與檢測,,國立台北科技大學製造科技所,2006。
    https://myweb.ntut.edu.tw/~wwwemo/download/shri/sofc-1.pdf
    [18] A. Weber, and E. Ivers-Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications,” Journal of power sources,vol.127, no.1-2, pp.273-283, 2004.
    [19] 韋文誠,固態燃料電池技術,高立圖書,2013。
    [20] A. Orera, and P. Slater, “New chemical systems for solid oxide fuel cells,” Chemistry of Materials, vol.22, no.3, pp.675-690, 2010.
    [21] DoITPoMS: Online Materials Science Learning Resources, Fuel cells,University of Cambridge, 2006.
    https://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php
    [22] J. Zhu, and A. Thomas, “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, vol.92, no.3-4, pp.225-233, 2009.
    [23] E. Kendrick, M. S. Islam, and P. R. Slater,“Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties,” Journal of Materials Chemistry, vol.17, no.30, pp.3104-3111, 2007.
    [24] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T.Suzuki, and K. Itoh, “Oxide ionic conductivity of apatite type Nd9·33(SiO4) 6O2 single crystal,” Journal of the European Ceramic Society, vol.19, no.4, pp.507-510, 1999.
    [25] E. Kendrick, and P. Slater, “Synthesis of hexagonal lanthanum germanate apatites through site selective isovalent doping with yttrium,” Materials Research Bulletin, vol.43, no.8-9, pp.2509-2513, 2008.
    [26] P. R. Slater, J. E. H. Sansom, and J. R. Tolchard, “Development of apatite-type oxide ion conductors,” Chemical Record, vol.4, no.6, pp.373-384, 2004.
    [27] H. Arikawa, H. Nishiguchi, T. Ishihara, and Y. Takita, “Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide,” Solid State Ionics, vol. 136, pp. 31-37,
    2000.
    [28] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography,vol.32, no.5, pp.751-767, 1976.
    [29] Allen C. Larson and Robert B. Von Dreele, “ General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR 86-748,2004.
    [30] R. A. Young, The Rietveld method, International Union of Crystallography,1993.
    [31] W. Liu, S. Yamaguchi, T. Tsuchiya, S. Miyoshi, K. Kobayashi, and W. Pan,“Sol–gel synthesis and ionic conductivity of oxyapatite-type La9.33+xSi6O26+1.5x,” Journal of power sources, vol. 235, pp. 62-66, 2013.
    [32] A. Orera, T. Baikie, P. Panchmatia, T. J. White, J. Hanna, M. E. Smith, M. S.Islam, E. Kendrick, and P. R. Slater, “Strategies for the Optimisation of the Oxide Ion Conductivities of Apatite‐Type Germanates,” Fuel Cells, vol.11, no.1, pp.10-16, 2011.
    [33] A. Orera, T. Baikie, E. Kendrick, J. F. Shin, S. Pramana, R. Smith, T. White,M. Sanjuán, and P. Slater, “Apatite germanates doped with tungsten:synthesis,structure, and conductivity,” Dalton Transactions, vol. 40, no. 15, pp. 3903-3908, 2011.
    [34] S. F. Wang, Y. X. Liu, Y. F. Hsu, C. J. Li, and P. Jasinski, “Effects of La content on the densification, microstructure, and conductivity of doped La10−xGe6O26±δ Telectrolytes,” International Journal of Applied Ceramic Technology, vol.14,no.1, pp.84-93, 2017.
    [35] E. Abram, C. Kirk, D. Sinclair, and A. West, “Synthesis and characterisation of lanthanum germanate-based apatite phases,” Solid State Ionics, vol. 176, no.
    23-24, pp. 1941-1947, 2005.

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE