簡易檢索 / 詳目顯示

研究生: 洪志瑋
Hong, Jhih-Wei
論文名稱: (U1, U2)在有限體上的Theta對應
The Theta Correspondence of (U1, U2) over a Finite Field
指導教授: 潘戍衍
Pan, Shu-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 34
外文關鍵詞: Weil representation, Theta correspondence
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we study the theta correspondence of the reductive dual pairs (U_1(F),U_1(F)) and (U_1(F),U_2(F)) over a finite field F whose characteristic is not two by decomposing the Weil representations of the symplectic Sp_2(F) and Sp_4(F) respectively.

    1 Introduction 2 1.1 Linear representations of finite groups 2 1.2 Notations 6 2 Weil Representations and Reductive Dual Pairs 7 2.1 Weil representation 7 2.2 The dimension of the Weil representation of Spn(F) 8 2.3 Reductive dual pair 10 2.4 Theta correspondence 11 3 Theta Correspondence of (U1(F),U1(F)) 13 3.1 Irreducible representations of SL2(F) 13 3.2 The Weil representation of Sp2(F) 16 3.3 Theta correspondence of (U1(F),U1(F)) 18 4 Theta Correspondence of (U1(F),U2(F)) 23 4.1 The Weil representation of Sp4(F) 23 4.2 Representations of U2(F) 25 4.3 The restriction of representations of U2(F) to U1(F) 27 4.4 Theta Correspondence of (U1(F),U2(F)) 31

    [1] J. Adams and A. Moy, Unipotent representations and reductive dual pairs over finite fields,
    Trans. Amer. Math. Soc. 340 (1993), 309--321.

    [2] V. Ennola, On the characters of the finite unitary groups,
    Ann. Acad. Sa. Fenn. Math., 323 (1963), 3--35.

    [3] W. Fulton and J. Harris, Representation Theory,
    Springer-Verlag, New York, 1991.

    [4] Paul Gerardin, Weil representations associated to finite fields,
    J. Algebra, 46 (1977), 54--101.

    [5] R. Howe, Invariant theory and duality for classical groups over finite fields with applications to their singular
    representation, preprint.

    [6] Brooks Roberts, Lecture notes, University of Maryland, College Park, 1994.

    [7] Jean-Pierre Serre, Linear representations of finite groups (translated by L. Scoot),
    Springer-Verlag, New York, 1977.

    [8] D. Prasad, Weil representation, Howe duality, and the theta correspondence, in Theta functions, from the classical to the modern, Amer. Math. Soc., Providence, 1993, 105--127.

    [9] B. Srinivasan, The characters of the finite symplectic group Sp(4,q),
    Trans. Amer. Math. Soc., 131 (1968), 488--525.

    下載圖示 校內:立即公開
    校外:2003-07-22公開
    QR CODE