| 研究生: |
陳則翰 Chen, Tse-Han |
|---|---|
| 論文名稱: |
非病毒載體輸送WWOX基因對鱗狀上皮細胞癌之效應 Effect of WWOX Gene Delivery by Nonviral Vectors to Squamous Cell Carcinoma |
| 指導教授: |
蔡瑞真
Tsai, Jui-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 鱗狀上皮細胞癌 、WWOX基因 、基因傳遞 、polyethylenimine (PEI) 、複合物N/P ratio |
| 外文關鍵詞: | Squamous cell carcinoma (SCC), WWOX gene, gene delivery, polyethylenimine(PEI), polyplex N/P ratio |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
皮膚鱗狀上皮細胞癌(cutaneous squamous cell carcinoma)是一種惡性且易於轉移的皮膚腫瘤,在皮膚癌的發生率中排名第二位,近十年來甚至有明顯上升的趨勢。皮膚鱗狀上皮細胞癌是發生於表皮上基底層(suprabasal epidermis)的鱗狀細胞,常見的發生原因有紫外線的照射、游離輻射線的暴露、人類乳頭狀瘤病毒(HPV)感染、長期接觸化學致癌物質、器官移植接受者、基因變異及傷口久不癒合等。臨床上已用於治療皮膚鱗狀上皮細胞癌的方法有外科手術、放射治療及化學治療,尚於研究階段的治療方式有免疫療法及基因療法。
WWOX基因是一種腫瘤抑制基因,位於人類染色體16q23.3-24.1的位置,可轉譯出WWOX/FOR/WOX1家族蛋白。過去研究發現許多癌細胞本身的WWOX基因表現偏低,包括皮膚鱗狀上皮細胞癌,並藉由許多實驗證明WWOX蛋白質具有腫瘤抑制的效果;更進一步的研究將WWOX基因藉由病毒性載體送入肺癌、乳癌、攝護腺癌和胰臟癌等癌細胞,能成功觀察到抑制腫瘤生長的效果。因此,將WWOX基因送入皮膚鱗狀上皮細胞癌,對於皮膚癌的治療而言非常值得研究。
基因傳遞(gene delivery)的技術在發展基因療法(gene therapy)上佔了很重要的部分。基因傳遞的路徑很多,若要採用非侵入性的方式則需要一個有效的載體以達到基因傳遞的目的。PEI為帶正電荷的聚合物載體,各種研究證實能成功的將基因傳送入各種不同的細胞,而各細胞適合之轉染條件有所不同,因此用於不同細胞之轉染條件仍須確認。
本研究藉由PEI特性分析以及細胞實驗尋找適合皮膚鱗狀上皮細胞癌的PEI轉染條件,觀察WWOX基因送入皮膚鱗狀上皮細胞癌所產生的細胞凋亡反應,從中挑選最適合的條件進行in vivo試驗。此外,藉由皮膚局部給藥的方式將WWOX基因傳送進入皮膚,並以組織切片觀察WWOX基因表現之位置,並推測複合物進入皮膚之路徑。
研究結果顯示,N/P ratio大於4:1時PEI能與WWOX基因形成有效複合物,且複合物的表面電荷隨著N/P ratio增加而增加,最後趨近於+60mV。PEI載體之細胞毒性及產生之細胞凋亡比例,隨著PEI濃度增加而增加;PEI/WWOX複合物之轉染效率隨著N/P ratio增加而增加,而產生之細胞凋亡比例則在N/P ratio 10:1時達到最大值。計算由WWOX基因引起之細胞凋亡比例,N/P ratio 10:1之複合物最大,N/P ratio 8:1之複合物次高。綜合上述結果,考慮轉染效率、細胞凋亡比例及載體細胞毒性等因素,篩選出N/P ratio 8:1之複合物做為in vivo皮膚局部給藥之條件。
PEI/WWOX複合物(N/P ratio 8:1)能成功地將WWOX基因送入正常裸鼠皮膚之毛囊,並在毛囊周圍組織表現細胞凋亡反應。而在SCC-15 tumor xenograft之裸鼠皮膚上雖能觀察到表層皮膚之綠色螢光表現,但複合物無法到達較深層之腫瘤組織,亦無法觀察到對映之細胞凋亡反應。腫瘤皮膚局部給藥之研究,需考慮tumor xenograft之皮膚表面型態學變化,設計適當之給藥頻次及觀察時間點,此部分有待更多之研究。本研究可做為相關皮膚基因傳遞研究之參考。
Cutaneous squamous cell carcinoma (SCC) is the second most common form of skin cancer. The incidence of this type of skin cancer has increased greatly for the past decade. However, the etiology is largely unknown. Cutaneous SCC is malignant and tends to spread or metastasize. It is believed to originate from the squamous cells located at the suprabasal epidermis. Several methods for treatment of squamous cell carcinoma are acceptable, including surgery, radiotherapy, chemotherapy, immunotherapy and gene therapy. Factors that influence the choice of treatment include the site, grade, and stage of the primary tumor; patient age; and general medical condition.
Human WWOX gene, encoding the WWOX/FOR/WOX1 family proteins, is mapped to a fragile site on chromosome 16q23.2. Loss of heterozygosity of WWOX gene has been shown in numerous types of cancers, including squamous cell carcinoma. WOX1 protein is considered as a candidate tumor suppressor protein. In several studies, the restoration of WWOX gene in lung cancer cells, breast cancer cells, prostate cancer cells and pancreatic cancer cells prevents their growth both in vitro and in vivo.
The technology of gene delivery plays an important role in the development of gene therapy. Several methods have been developed to transfer DNA into cells for gene therapy. One of the non-invasive gene delivery method is the use of gene vectors or carriers. Polyethylenimine (PEI) is a cationic polymer-based gene carrier, many researches prove that PEI can transfer genes into different kind of cells under different transfection condition.
In this study, PEI 25kDa was used as a gene vector. The PEI/WWOX complexes of different N/P ratio were characterized by zeta potential measurement and gel retardation assay. Cytotoxicity, transfection efficiency and percentage of cell apoptosis were analyzed in SCC cells, and to determine optimal transfection conditions of PEI/WWOX complex for in vivo experiments. After topical administration of PEI/WWOX complex for 24 hours to the skin of nude mice, the skin tissue was cryosectioned to examine the localization of gene expression.
The results demonstrated that the WWOX gene can bind with PEI when N/P ratios are greater than 4:1, and zeta potential was increased with the increase of N/P ratio (with a final value of +60mV). Cytotoxicity and apoptotic effect of PEI also increased with PEI concentration. The transfection efficiency of PEI/WWOX complex increased with N/P ratio, while apoptotic effect achieved a maximal value at N/P ratio of 10:1. Based on these results, PEI/WWOX complex of N/P ratio 8:1 was selected for topical administration in vivo.
In in vivo experiments, PEI successfully delivered WWOX gene into hair follicle of normal skin, and apoptosis was induced around hair follicle. However, WWOX gene was expressed only on surface of the SCC-15 tumor xenografted skin.
Further studies are required to improve delivery of PEI/WWOX complex to tumor xenografted skin.
1. Ahn H.H., Lee J.H., Kim K.S., Lee J.Y., Kim M.S., Khang G., Lee I.W., Lee H.B. Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials, 2008. 29(15): p. 2415-22.
2. Al-Dosari M.S., Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J, 2009. 11(4): p. 671-81.
3. Alam M., Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med, 2001. 344(13): p. 975-83.
4. Anderson W.F. Human gene therapy. Nature, 1998. 392(6679 Suppl): p. 25-30.
5. Aqeilan R.I., Hagan J.P., Aqeilan H.A., Pichiorri F., Fong L.Y., Croce C.M. Inactivation of the Wwox gene accelerates forestomach tumor progression in vivo. Cancer Res, 2007a. 67(12): p. 5606-10.
6. Aqeilan R.I., Kuroki T., Pekarsky Y., Albagha O., Trapasso F., Baffa R., Huebner K., Edmonds P., Croce C.M. Loss of WWOX expression in gastric carcinoma. Clin Cancer Res, 2004a. 10(9): p. 3053-8.
7. Aqeilan R.I., Pekarsky Y., Herrero J.J., Palamarchuk A., Letofsky J., Druck T., Trapasso F., Han S.Y., Melino G., Huebner K., Croce C.M. Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A, 2004b. 101(13): p. 4401-6.
8. Aqeilan R.I., Trapasso F., Hussain S., Costinean S., Marshall D., Pekarsky Y., Hagan J.P., Zanesi N., Kaou M., Stein G.S., Lian J.B., Croce C.M. Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci U S A, 2007b. 104(10): p. 3949-54.
9. Bednarek A.K., Laflin K.J., Daniel R.L., Liao Q., Hawkins K.A., Aldaz C.M. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res, 2000. 60(8): p. 2140-5.
10. Bednarek A.K., Keck-Waggoner C.L., Daniel R.L., Laflin K.J., Bergsagel P.L., Kiguchi K., Brenner A.J., Aldaz C.M. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res, 2001. 61(22): p. 8068-73.
11. Bieber T., Meissner W., Kostin S., Niemann A., Elsasser H.P. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J Control Release, 2002. 82(2-3): p. 441-54.
12. Boeckle S., von Gersdorff K., van der Piepen S., Culmsee C., Wagner E., Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med, 2004. 6(10): p. 1102-11.
13. Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A., Fusenig N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol, 1988. 106(3): p. 761-71.
14. Boussif O., Lezoualc'h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A, 1995. 92(16): p. 7297-301.
15. Bragonzi A., Dina G., Villa A., Calori G., Biffi A., Bordignon C., Assael B.M., Conese M. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther, 2000. 7(20): p. 1753-60.
16. Brunner S., Furtbauer E., Sauer T., Kursa M., Wagner E. Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther, 2002. 5(1): p. 80-6.
17. Brunner S., Sauer T., Carotta S., Cotten M., Saltik M., Wagner E. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther, 2000. 7(5): p. 401-7.
18. Chang N.S. A potential role of p53 and WOX1 in mitochondrial apoptosis (review). Int J Mol Med, 2002. 9(1): p. 19-24.
19. Chang N.S., Doherty J., Ensign A. JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem, 2003a. 278(11): p. 9195-202.
20. Chang N.S., Hsu L.J., Lin Y.S., Lai F.J., Sheu H.M. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med, 2007. 13(1): p. 12-22.
21. Chang N.S., Schultz L., Hsu L.J., Lewis J., Su M., Sze C.I. 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene, 2005a. 24(4): p. 714-23.
22. Chang N.S., Doherty J., Ensign A., Schultz L., Hsu L.J., Hong Q. WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem, 2005b. 280(52): p. 43100-8.
23. Chang N.S., Pratt N., Heath J., Schultz L., Sleve D., Carey G.B., Zevotek N. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem, 2001. 276(5): p. 3361-70.
24. Chang N.S., Doherty J., Ensign A., Lewis J., Heath J., Schultz L., Chen S.T., Oppermann U. Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol, 2003b. 66(8): p. 1347-54.
25. Chen S.T., Chuang J.I., Wang J.P., Tsai M.S., Li H., Chang N.S. Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience, 2004. 124(4): p. 831-9.
26. Choi Y.J., Kang S.J., Kim Y.J., Lim Y.B., Chung H.W. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug Chem Toxicol, 2010. p.
27. Choosakoonkriang S., Lobo B.A., Koe G.S., Koe J.G., Middaugh C.R. Biophysical characterization of PEI/DNA complexes. J Pharm Sci, 2003. 92(8): p. 1710-22.
28. De Smedt S.C., Demeester J., Hennink W.E. Cationic polymer based gene delivery systems. Pharm Res, 2000. 17(2): p. 113-26.
29. Del Mare S., Salah Z., Aqeilan R.I. WWOX: its genomics, partners, and functions. J Cell Biochem, 2009. 108(4): p. 737-45.
30. Demeneix B., Behr J.P. Polyethylenimine (PEI). Adv Genet, 2005. 53(p. 217-30.
31. Densmore C.L., Orson F.M., Xu B., Kinsey B.M., Waldrep J.C., Hua P., Bhogal B., Knight V. Aerosol delivery of robust polyethyleneimine-DNA complexes for gene therapy and genetic immunization. Mol Ther, 2000. 1(2): p. 180-8.
32. Domashenko A., Gupta S., Cotsarelis G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol, 2000. 18(4): p. 420-3.
33. Dow S., Elmslie R., Kurzman I., MacEwen G., Pericle F., Liggitt D. Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther, 2005. 16(8): p. 937-46.
34. English D.R., Armstrong B.K., Kricker A., Winter M.G., Heenan P.J., Randell P.L. Demographic characteristics, pigmentary and cutaneous risk factors for squamous cell carcinoma of the skin: a case-control study. Int J Cancer, 1998. 76(5): p. 628-34.
35. Erbacher P., Bettinger T., Belguise-Valladier P., Zou S., Coll J.L., Behr J.P., Remy J.S. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J Gene Med, 1999. 1(3): p. 210-22.
36. Fabbri M., Iliopoulos D., Trapasso F., Aqeilan R.I., Cimmino A., Zanesi N., Yendamuri S., Han S.Y., Amadori D., Huebner K., Croce C.M. WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15611-6.
37. Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., Wenz M., Northrop J.P., Ringold G.M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A, 1987. 84(21): p. 7413-7.
38. Ferber D. Gene therapy. Safer and virus-free? Science, 2001. 294(5547): p. 1638-42.
39. Fischer D., Bieber T., Li Y., Elsasser H.P., Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res, 1999. 16(8): p. 1273-9.
40. Gebhart C.L., Kabanov A.V. Evaluation of polyplexes as gene transfer agents. J Control Release, 2001. 73(2-3): p. 401-16.
41. Godbey W.T., Wu K.K., Mikos A.G. Poly(ethylenimine) and its role in gene delivery. J Control Release, 1999. 60(2-3): p. 149-60.
42. Goula D., Remy J.S., Erbacher P., Wasowicz M., Levi G., Abdallah B., Demeneix B.A. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther, 1998. 5(5): p. 712-7.
43. Guler G., Uner A., Guler N., Han S.Y., Iliopoulos D., Hauck W.W., McCue P., Huebner K. The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma. Cancer, 2004. 100(8): p. 1605-14.
44. Halazonetis T.D., Gorgoulis V.G., Bartek J. An oncogene-induced DNA damage model for cancer development. Science, 2008. 319(5868): p. 1352-5.
45. Helander I.M., Latva-Kala K., Lounatmaa K. Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. Microbiology, 1998. 144 ( Pt 2)(p. 385-90.
46. Helander I.M., Alakomi H.L., Latva-Kala K., Koski P. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology, 1997. 143 ( Pt 10)(p. 3193-9.
47. Iliopoulos D., Fabbri M., Druck T., Qin H.R., Han S.Y., Huebner K. Inhibition of breast cancer cell growth in vitro and in vivo: effect of restoration of Wwox expression. Clin Cancer Res, 2007. 13(1): p. 268-74.
48. Iwai M., Harada Y., Tanaka S., Muramatsu A., Mori T., Kashima K., Imanishi J., Mazda O. Polyethylenimine-mediated suicide gene transfer induces a therapeutic effect for hepatocellular carcinoma in vivo by using an Epstein-Barr virus-based plasmid vector. Biochem Biophys Res Commun, 2002. 291(1): p. 48-54.
49. Jensen P., Hansen S., Moller B., Leivestad T., Pfeffer P., Geiran O., Fauchald P., Simonsen S. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J Am Acad Dermatol, 1999. 40(2 Pt 1): p. 177-86.
50. Jeudy G., Salvadori F., Chauffert B., Solary E., Vabres P., Chluba J. Polyethylenimine-mediated in vivo gene transfer of a transmembrane superantigen fusion construct inhibits B16 murine melanoma growth. Cancer Gene Ther, 2008. 15(11): p. 742-9.
51. Johnson T.M., Rowe D.E., Nelson B.R., Swanson N.A. Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J Am Acad Dermatol, 1992. 26(3 Pt 2): p. 467-84.
52. Kang Y., Zhang X., Jiang W., Wu C., Chen C., Zheng Y., Gu J., Xu C. Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine. BMC Cancer, 2009. 9(p. 126.
53. Kircheis R., Schuller S., Brunner S., Ogris M., Heider K.H., Zauner W., Wagner E. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med, 1999. 1(2): p. 111-20.
54. Kongkaneramit L., Sarisuta N., Azad N., Lu Y., Iyer A.K., Wang L., Rojanasakul Y. Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells. J Pharmacol Exp Ther, 2008. 325(3): p. 969-77.
55. Kraemer K.H., Lee M.M., Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol, 1987. 123(2): p. 241-50.
56. Krummel K.A., Denison S.R., Calhoun E., Phillips L.A., Smith D.I. The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1. Genes Chromosomes Cancer, 2002. 34(2): p. 154-67.
57. Kunath K., von Harpe A., Petersen H., Fischer D., Voigt K., Kissel T., Bickel U. The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-kappaB decoy in mice. Pharm Res, 2002. 19(6): p. 810-7.
58. Lai F.J., Cheng C.L., Chen S.T., Wu C.H., Hsu L.J., Lee J.Y., Chao S.C., Sheen M.C., Shen C.L., Chang N.S., Sheu H.M. WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin Cancer Res, 2005. 11(16): p. 5769-77.
59. Lemkine G.F., Mantero S., Migne C., Raji A., Goula D., Normandie P., Levi G., Demeneix B.A. Preferential transfection of adult mouse neural stem cells and their immediate progeny in vivo with polyethylenimine. Mol Cell Neurosci, 2002. 19(2): p. 165-74.
60. Li D., Yu H., Huang H., Shen F., Wu X., Li J., Wang J., Cao X., Wang Q., Tang G. FGF receptor-mediated gene delivery using ligands coupled to polyethylenimine. J Biomater Appl, 2007. 22(2): p. 163-80.
61. Li S., Wu S.P., Whitmore M., Loeffert E.J., Wang L., Watkins S.C., Pitt B.R., Huang L. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol, 1999. 276(5 Pt 1): p. L796-804.
62. Lu Y., Madu C.O. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv, 2010. 7(1): p. 19-35.
63. Ludes-Meyers J.H., Kil H., Nunez M.I., Conti C.J., Parker-Thornburg J., Bedford M.T., Aldaz C.M. WWOX hypomorphic mice display a higher incidence of B-cell lymphomas and develop testicular atrophy. Genes Chromosomes Cancer, 2007. 46(12): p. 1129-36.
64. Mahajan N.P., Whang Y.E., Mohler J.L., Earp H.S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res, 2005. 65(22): p. 10514-23.
65. Mangelsdorf M., Ried K., Woollatt E., Dayan S., Eyre H., Finnis M., Hobson L., Nancarrow J., Venter D., Baker E., Richards R.I. Chromosomal fragile site FRA16D and DNA instability in cancer. Cancer Res, 2000. 60(6): p. 1683-9.
66. Mehier-Humbert S., Guy R.H. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev, 2005. 57(5): p. 733-53.
67. Meuli M., Liu Y., Liggitt D., Kashani-Sabet M., Knauer S., Meuli-Simmen C., Harrison M.R., Adzick N.S., Heath T.D., Debs R.J. Efficient gene expression in skin wound sites following local plasmid injection. J Invest Dermatol, 2001. 116(1): p. 131-5.
68. Mintzer M.A., Simanek E.E. Nonviral vectors for gene delivery. Chem Rev, 2009. 109(2): p. 259-302.
69. Nakayama S., Semba S., Maeda N., Aqeilan R.I., Huebner K., Yokozaki H. Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells. Cancer Sci, 2008. 99(7): p. 1370-6.
70. Neu M., Fischer D., Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med, 2005. 7(8): p. 992-1009.
71. Niidome T., Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther, 2002. 9(24): p. 1647-52.
72. Nunez M.I., Ludes-Meyers J., Aldaz C.M. WWOX protein expression in normal human tissues. J Mol Histol, 2006. 37(3-4): p. 115-25.
73. Oligino T.J., Yao Q., Ghivizzani S.C., Robbins P. Vector systems for gene transfer to joints. Clin Orthop Relat Res, 2000. 379 Suppl): p. S17-30.
74. Pack D.W., Hoffman A.S., Pun S., Stayton P.S. Design and development of polymers for gene delivery. Nat Rev Drug Discov, 2005. 4(7): p. 581-93.
75. Park T.G., Jeong J.H., Kim S.W. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev, 2006. 58(4): p. 467-86.
76. Parker A.L., Newman C., Briggs S., Seymour L., Sheridan P.J. Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev Mol Med, 2003. 5(22): p. 1-15.
77. Pathak A., Patnaik S., Gupta K.C. Recent trends in non-viral vector-mediated gene delivery. Biotechnol J, 2009. 4(11): p. 1559-72.
78. Pimenta F.J., Gomes D.A., Perdigao P.F., Barbosa A.A., Romano-Silva M.A., Gomez M.V., Aldaz C.M., De Marco L., Gomez R.S. Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas. Int J Cancer, 2006. 118(5): p. 1154-8.
79. Pollard H., Toumaniantz G., Amos J.L., Avet-Loiseau H., Guihard G., Behr J.P., Escande D. Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med, 2001. 3(2): p. 153-64.
80. Qin H.R., Iliopoulos D., Semba S., Fabbri M., Druck T., Volinia S., Croce C.M., Morrison C.D., Klein R.D., Huebner K. A role for the WWOX gene in prostate cancer. Cancer Res, 2006. 66(13): p. 6477-81.
81. Raghavachari N., Fahl W.E. Targeted gene delivery to skin cells in vivo: a comparative study of liposomes and polymers as delivery vehicles. J Pharm Sci, 2002. 91(3): p. 615-22.
82. Regnstrom K., Ragnarsson E.G., Koping-Hoggard M., Torstensson E., Nyblom H., Artursson P. PEI - a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther, 2003. 10(18): p. 1575-83.
83. Rheinwald J.G., Beckett M.A. Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultures from human squamous cell carcinomas. Cancer Res, 1981. 41(5): p. 1657-63.
84. Ried K., Finnis M., Hobson L., Mangelsdorf M., Dayan S., Nancarrow J.K., Woollatt E., Kremmidiotis G., Gardner A., Venter D., Baker E., Richards R.I. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet, 2000. 9(11): p. 1651-63.
85. Sherr C.J. Principles of tumor suppression. Cell, 2004. 116(2): p. 235-46.
86. Somia N., Verma I.M. Gene therapy: trials and tribulations. Nat Rev Genet, 2000. 1(2): p. 91-9.
87. Sze C.I., Su M., Pugazhenthi S., Jambal P., Hsu L.J., Heath J., Schultz L., Chang N.S. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem, 2004. 279(29): p. 30498-506.
88. Todd R., Wong D.T. Oncogenes. Anticancer Res, 1999. 19(6A): p. 4729-46.
89. Toropainen E., Hornof M., Kaarniranta K., Johansson P., Urtti A. Corneal epithelium as a platform for secretion of transgene products after transfection with liposomal gene eyedrops. J Gene Med, 2007. 9(3): p. 208-16.
90. Tousignant J.D., Gates A.L., Ingram L.A., Johnson C.L., Nietupski J.B., Cheng S.H., Eastman S.J., Scheule R.K. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther, 2000. 11(18): p. 2493-513.
91. Tros de Ilarduya C., Sun Y., Duzgunes N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci, 2010. p.
92. Uduehi A.N., Stammberger U., Frese S., Schmid R.A. Efficiency of non-viral gene delivery systems to rat lungs. Eur J Cardiothorac Surg, 2001. 20(1): p. 159-63.
93. Vicennati P., Giuliano A., Ortaggi G., Masotti A. Polyethylenimine in medicinal chemistry. Curr Med Chem, 2008. 15(27): p. 2826-39.
94. Wightman L., Kircheis R., Rossler V., Carotta S., Ruzicka R., Kursa M., Wagner E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med, 2001. 3(4): p. 362-72.
95. Wiseman J.W., Goddard C.A., McLelland D., Colledge W.H. A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Ther, 2003. 10(19): p. 1654-62.
96. Zhang C., Yadava P., Hughes J. Polyethylenimine strategies for plasmid delivery to brain-derived cells. Methods, 2004. 33(2): p. 144-50.
U.S. National Library of Medicine.
98. 張萬豐 (2008) 探討聚乙烯亞胺轉殖綠螢光蛋白基因進入老鼠胚胎纖維母細胞的最佳條件。嘉南藥理科技大學生物科技系,碩士論文,中華民國九十七年一月三十日。
99. 成大醫學院皮膚科。
校內:2015-08-23公開