簡易檢索 / 詳目顯示

研究生: 簡嘉毅
Chien, CHia-Yi
論文名稱: 鈦-鉬合金熱處理後拉伸疲勞性質研究
The tensile fatigue properties of Ti-Mo alloys after heating treatment
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 102
中文關鍵詞: 拉伸疲勞熱處理鈦-鉬合金
外文關鍵詞: Ti-Mo alloys, fatigue
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鈦合金由於具有質輕、高強度、生物相容性佳以及優異的抗腐蝕性等優點,近年來被廣泛地運用於生醫植入材上。但金屬植入人體內,除了必須面對體內環境複雜的影響外,還需考量到身體每天各種運動過程當中,所產生的各種複雜力學而造成對金屬植入材的疲勞破壞。

      本實驗將以Ti-A和Ti-B兩種新型鈦合金進行熱處理後的拉伸疲勞性質進行研究,以了解其所能夠承受106次週期之抗應力與抗應變之疲勞強度。
      實驗結果發現熱處理後的Ti-A其所能抵抗106次週期應力之抗應力疲勞強度為425Mpa,抗應變疲勞強度為5.12×103με;熱處理後的Ti-B其所能抵抗106次週期應力之抗應力疲勞強度為475Mpa,抗應變疲勞強度為5.36×103με。

    none

    第一章 前言……………………………………………………1 1-1 研究背景………………………………………………1 1-2 研究目的………………………………………………1 第二章 生醫材料簡介…………………………………………2 2-1 生醫材料之定義………………………………………2 2-2 生醫材料的分類………………………………………2 2-2-1 金屬生醫材料………………………………………4 2-2-2 陶瓷生醫材料………………………………………4 2-2-3 高分子生醫材料……………………………………5 2-2-4 生醫複合材料………………………………………6 第三章 理論基礎與文獻回顧…………………………………7 3-1 金屬生醫材料的發展………………………………7 3-1-1 應力遮蔽(stress shielding)效應……………8 3-2 純鈦之性質…………………………………………9 3-3 純鈦及鈦合金之類別與應用………………………12 3-3-1 α或nearα型鈦合金……………………………13 3-3-2 β型鈦合金………………………………………17 3-3-3 α+β型鈦合金…………………………………22 3-3-4 α”型鈦合金……………………………………22 3-4 Mo當量 ……………………………………………23 3-5 生醫用鈦合金之發展 ……………………………24 3-5-1 TMZF合金………………………………………26 3-5-2 Ti-13Nb-13Zr……………………………27 3-5-3 Ti-29Nb-13Ta-4.6Zr……………………27 3-6 鈦合金強化之方法 ………………………………28 3-6-1 加工硬化…………………………………………28 3-6-2 熱處理……………………………………………28 3-6-2-1 固溶處理………………………………………29 3-6-2-2 淬火……………………………………………29 3-7 金屬疲勞破壞………………………………………32 3-8 疲勞裂縫成長機構…………………………………35 3-9 人體疲勞環境………………………………………43 3-10 疲勞測試方法………………………………………43 第四章 實驗步驟及方法………………………………………44 4-1 實驗流程……………………………………………44 4-2 實驗材料……………………………………………45 4-3 Ti-A及Ti-B合金之配製…………………………45 4-4 合金熔煉、鑄造設備………………………………46 4-5 合金熔煉、鑄造過程………………………………48 4-6 滾軋製程……………………………………………50 4-7 試片規格及尺寸……………………………………51 4-8 固溶處理……………………………………………53 4-9 研磨及拋光處理……………………………………53 4-9-1 研磨處理…………………………………………53 4-9-2 拋光處理…………………………………………53 4-9-2-1 化學拋光處理部份……………………………53 4-9-2-2 電化學拋光處理部份…………………………53 4-10 拉伸與疲勞測試…………………………………54 4-10-1 拉伸測試………………………………………54 4-10-2 疲勞測試………………………………………55 4-11 X光(X-Ray Diffraction ,XRD)相分析………57 4-12 掃描式電子顯微鏡與能量散佈光譜儀成份分析 …58 4-13 金相顯微組織觀察 …………………………………58 第五章 實驗結果與討論 ………………………………………60 5-1 XRD和金相組織分析結果 …………………………60 5-2 EDS合金成份分析結果 ……………………………63 5-3 Ti-A和Ti-B拉伸機械性質之結果 ………………64 5-4 疲勞測試結果 ………………………………………67 5-4-1 Ti-B疲勞測試S-N曲線 …………………………67 5-4-2 Ti-A疲勞測試S-N曲線 …………………………73 5-5 疲勞測試Strain-N曲線……………………………76 5-6 疲勞破斷面SEM分析結果 …………………………79 第六章 結論 …………………………………………………98 第七章 參考資料 ……………………………………………99

    Akahori T and Niinomi M. Fracture characteristics of fatigued Ti-6Al-4V ELI as an implant material, Mater Sci Eng A, 243, 237-43, 1998.
    Bagariaskii IA, Nosova GI and Tagunova TV. Factors in the formation of metastable phase in titanium-based alloys [Engl. trans.]. Sov Phys Dokl, 3, 1014-8, 1959.
    Bania PJ. Beta titanium alloys and their role in the titanium industry. In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.
    Clemson Advisory Board for Biomaterials. “Definition of the word biomaterial”, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.
    Collings EW. The physical metallurgy of titanium alloys, ASM Series in Metal Processing. Gegel HL, editor. Cleveland, Metals Park, OH: American Society for Metals, 1984.
    Davidson JA and Kovacs P. Biocompatible low-modulus titanium alloy for medical implants. US Patent No. 5169597, 1992.
    Davidson JA. Titanium molybdenum hafnium alloys for medical implants and device. US Patent No. 5954724, 1999.
    Davis R, Flower HM and West DRF. Martensitic transformations in Ti-Mo alloys. J Mater Sci, 14, 712-22, 1979.
    Donachie MJ. Relationships of properties and process. In: Donachie MJ editor, Titanium: a technical guide Chap. 11, ASM International: Metal Park, OH,. p. 157-206, 1989.
    Duerig TW, Pelton AR and Stöckel D. The use of superelasticity in medicine. Metall, 50, 569-74, 1996.
    Fedotov SG. Peculiarities of changes in elastic properties of Ti martensite. Titanium Science and Technology, 2, 871-81, 1973.
    Hampel H and Piehler HR. Evaluation of the corrosion fatigue behavior of porous coated Ti-6Al-4V. edited by Brown SA and Lemons JE, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, 136-148, 1996.
    Ho WF, Ju CP and Chern Lin JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials, 20, 2115-22, 1999.
    Laing PG, Fergosun AB and Hodge ES. Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res, 1, 135-49, 1967.
    Li SJ, Niinomi M, Akahori T, Kasuga T, Yang R and Hao YL. Fatigue characteristics of bioactive glass- ceramic–coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Biomaterials, 25, 3369-78, 2004.
    Lin CW, Ju CP and Chern Lin JH. A comparison of the fatigue behavior of cast Ti–7.5Mo with c.p. titanium, Ti–6Al–4V and Ti–13Nb–13Zr alloys, Biomaterials, 26, 2899-907, 2005.
    Long M and Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials, 19, 1621-39, 1998.
    Long M, Crooks M and Rack HJ. High-cycle fatigue performance of solution-treated metastable-β titanium alloys. Acta Mater, 47, 661-9, 1999.
    Niinomi M, Saga A and Fukunaga KI. Long crack growth behavior of implant material Ti-5Al-2.5Fe in air and simulated body environment related to microstructure. International Journal of Fatigue, 22, 887-97, 2000.
    Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials, 24, 2673-83, 2003.
    Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A, 243, 231-6, 1998.
    Okazaki Y, Ito Y, Kyo K and Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng A, 213, 138-47, 1996.
    Park JB, Editor, Biomaterials science and engineering, Plenum Press, New York, 1989.
    Perl DP and Brody AR. Alzeihmer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science, 208, 297-9, 1980.
    Rao S, Ushida T, Tateishi T, Okazaki Y and Asao S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Biomed Mater Eng, 6, 79-86, 1996.
    Salgat GW and Koss DA. Fatigue crack propagation in single crystal and polycrystalline,age-hardenable Ti-V alloy, Master Sci Eng,35,263-72, 1978.
    Steinemann SG. Corrosion of titanium and titanium alloys for surgical implants. Ti’84 Science and Technology. Ljering G, Zwicker U, Bunk W. editors, 1373, 1984.
    Walker PR, LeBlanc J and Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry, 28, 3911-5, 1989.
    Wang K, Gustavson LJ and Dumbleton JH. Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, p. 76-87, 1996.
    Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A, 213, 134-7, 1996.
    Wolff J, Das Gesetz Der Transformation Der Knochen, Hirshwald Verlag, Berlin, 1892.
    Yumoto S, Ohashi H, Nagai H, Kakimi S, Ogawa Y, Iwata Y and Ishii K. Aluminum neurotoxicity in the rat brain. Int J of PIXE, World Scientific Publishing Company, 2, 493-504, 1992.
    Reed-Hill和Robert E著, 劉偉隆等人譯. 物理冶金, 全華科技圖書. 1996.
    昌山正孝著,賴耿陽譯. 非鐵金屬材料, 復漢出版社. 1993.
    莊政和. 鈦鉬合金熱處理後機械性質之研究,中華民國碩士論文, 2004

    下載圖示 校內:2010-07-28公開
    校外:2010-07-28公開
    QR CODE