| 研究生: |
洪瑄謄 Hung, Shiuan-Teng |
|---|---|
| 論文名稱: |
具適應性光學之雷射精密微加工系統 Laser Precision Micromachining with Adaptive Optics System |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 雷射微米加工 、聲光調變 、適應性光學 、可調變聚焦鏡 、干涉術 |
| 外文關鍵詞: | laser micromachining, acousto-optic modulation, adaptive optics, deformable mirror, interferometry |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具雙兩軸震鏡掃描器(galvanometer optical scanner)之雷射微米加工(laser micromachining)系統,以聲光調變器(acousto-optic modulator,AOM)控制雷射的開關及雷射聚焦點在平面上不同位置的光強弱,搭配實驗室自行研發的嵌入式數位訊號處理控制器(digital signal processor,DSP)來控制整體系統進而達到二維平面加工之目的。使用電荷耦合元件(charge coupled device,CCD)即時觀測欲加工的二維圖形,以及擷取雷射微米加工成果的影像。由於光學系統本身的像差以及外界的干擾或是欲加工表面上的粗糙不均勻會導致聚焦品質降低,影響加工品質,而適應性光學(adaptive optics)系統其作用為波前干擾的修正補償。可利用CCD偵測聚焦點光強分布,藉由控制可調變聚焦鏡(deformable mirror,DM)的面形來修正擾動波前,以期能改善成像解析度及雷射加工的聚焦點,進而縮小線寬以提升加工品質。
測試加工樣品利用三羥甲基丙烷三丙烯酸酯(trimethylolpropane triacrylate,TMPTA)來作為反應單體,加入光起始劑孟加拉玫瑰素(rose bengal) 1 mM,共同起始劑三乙醇胺(triethylamine,TEA) 0.1 M,將這些試劑依濃度調配後就能利用550 nm左右波長雷射光束來進行單光子高分子聚合反應(polymerization)。本論文使用波長為532 nm的固態綠光雷射(diode pump solid state laser) 做為光源,並成功利用DSP控制整體系統,帶動雙軸震鏡掃描器,搭配AOM控制雷射光源在加工樣品上的開關將高分子聚合固化,而加入螢光染劑可在加工後於顯微鏡上觀察螢光影像。另外,本論文也完成DM上37個元件的控制校正,利用邁克森干涉儀(Michelson interferometer)觀察鏡面元件的前後位移對波前的改變,並進一步加以測試DM對聚焦點尺寸的縮小,提升樣品上的加工圖形品質。
A laser micromachining system with a two-axis galvanometer optical scanner and a homemade embedded digital signal processor (DSP) controller has been developed to achieve two-dimensional (2D) micromachining. The switch the intensity of the laser for the different positions on fabrication plane is operated by an acousto-optic modulator (AOM). Simultaneously, a charge coupled device (CCD) camera is used to dynamically monitor the 2D fabricated structures. The quality of the micromachining might be seriously affected by the aberrations of the optical system, environmental disturbances, and the roughness and unevenness of the sample surface. The capability of an adaptive optics system (AOS) can be used to correct and compensate the disturbed wavefront of the laser. In order to shorten the line-width of the fabrication and then improve the quality of the laser micromachining, the CCD camera is designed as a 2D sensor to detect the intensity distribution of the focusing spot on the fabrication plane, and then a 2D deformable mirror (DM) with 37 elements is actuated by according to the controlling signal from the DSP to compensate the distortion.
In this preliminary fabrication, trimethylolpropane triacrylate (TMPTA) as reactive monomer is mixed with 1mM rose bengal as photoinitiator and 0.1M triethylamine as coinitiator with different concentrations. One-photon polymerization is made to excite the mixed reagents at the wavelength of around 550 nm. A diode-pump solid-state laser with 532 nm is used as the laser source to polymerize 2D micro-fabrication patterns successfully. To observe the fabricated micro-pattern by using fluorescence microscope, fluorescent dyes are added into the reagents. In addition, we have accomplished the adjustment of the DM by observing the change of interference fringes based on Michelson interferometry. Eventually, we have ability to control the DM based on AOS technique to minimize the size of the focusing spot, and then refined the quality of the laser micromachining.
[1] H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229 (1953).
[2] R. Q. Fugate, J. F. Riker, J. T. Roark, S. Stogsdill, and B. D. O’Neil, “Laser beacon compensated images of Saturn using a high-speed, near-infrared correlation tracker,” ESO Conference and Workshop Proceedings on Active and Adaptive Optics 54, 287-290 (1996).
[3] P. R. McCullough, R. Q. Fugate, J. C. Christou, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, R. A. Cleis, and J. F. Moroney, ‘‘Photoevaporating stellar envelopes observed with Rayleigh beacon adaptive optics,’’ Astrophys. J. 438, 394-403 (1995).
[4] J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268-3270 (1989).
[5] R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781-789 (1995).
[6] J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).
[7] C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
[8] A. Diaspro, Confocal and Two-Photon Microscopy, Foundations, Applications and Advances (Wiley-Liss, New York, 2002).
[9] M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006).
[10] http://www.neostech.com/
[11] http://www.cambridgetechnology.com/
[12] http://www.ti.com/
[13] http://www.cypress.com/
[14] S.-K. Park, S.-H. Baik, C.-J. Kim, and S. W. Ra, “A study on a fast measuring technique of wavefront using a Shack-Hartmann sensor,” Optics & Laser Technology 34, 687-694 (2002).
[15] D. B. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, “Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor,” Opt. Lett. 17, 1737-1739 (1992).
[16] G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162-6172 (1996).
[17] M. P. Rimmer, “Method for evaluating lateral shearing interferograms,” Appl. Opt. 13, 623-629 (1974).
[18] C. Elster, “Exact wave-front reconstruction from two lateral shearing interferograms,” J. Opt. Soc. Am. A 16, 2281-2285 (1999).
[19] H.-H. Lee, J.-H. You, and S.-H. Park, “Phase-shifting lateral shearing interferometer with two pairs of wedge plates”, Opt. Lett. 28, 2243–2245 (2003).
[20] 張智強,適應性光學之系統鑑別,中央大學機械工程所碩士論文,2004。
[21] 鍾正英,具液晶移相干涉術之適應性光學系統,中央大學機械工程所碩士論文,2005。
[22] M. A. Vorontsov and G. W. Carhart, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907-909 (1997).
[23] T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Selected Topics in Quantum Electronics 5, 83-89 (1999).
[24]M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, “Electrostatic effects in micromachined actuators for adaptive optics,” J. Electrostat. 42, 1-2 (1997).
[25] http://www.agiloptics.com/
[26] http://www.analog.com/
[27] http://www.ni.com/
[28] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
[29] L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14, 8613-8621 (2006).
[30] H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and system,” IEEE 21, 624-633 (2003).
[31] S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).