簡易檢索 / 詳目顯示

研究生: 陳怡潔
Chen, Yi-Chieh
論文名稱: 探討運動誘發的神經新生現象
The study of exercise-induced neurogenesis
指導教授: 郭余民
Kuo, Yu-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 運動神經新生
外文關鍵詞: neurogenesis, exercise
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   哺乳類的中樞神經系統會有神經新生的現象,現今已被廣為接受。神經新生的現象,只限定在幾個區域,其中之ㄧ是和學習及記憶能力相關的海馬迴區域。根據研究,海馬迴的齒回區在接受某些刺激後,會有顯著的神經新生。這些刺激包括使老鼠跑跑步機運動及滾輪運動。另外,一些神經滋養因子,如brain-derived neurotrophic factor (BDNF)及Neurotrophin 4/5 (NT4/5),對神經新生也有幫助。而高量的皮質酮則被認為會抑制神經新生;去腎上腺老鼠的齒回區,會有明顯的神經新生。此外,皮質酮的接受器和維持齒回區神經細胞的生存有關。有學者推論,運動促進的神經新生,可能是透過調控下視丘-腦下垂體-腎上腺軸的活性。然而這機制到目前尚未被證實。本實驗的目的在探討皮質酮是否參予運動促進的神經新生現象。實驗結果顯示,經過兩、五或八週的跑步機訓練後,C57BL/6J小鼠海馬迴齒回區的新生神經細胞數目比控制組多,而在訓練五週後,其新生細胞數達到最大量。血清中皮質酮基礎值的表現在經過五週的運動訓練後有些微上升的現象,但未達顯著差異。同時實驗結果也發現,小鼠去除腎上腺後,新生的神經細胞數目上升,然而,由運動所促進的神經新生現象則會被抑制,顯示運動促進神經新生與皮質酮有關。為進一步探討察運動訓練促進神經新生的可能作用機制,因此在五週運動訓練後兩天犧牲老鼠,利用西方點墨法觀察海馬迴區域的蛋白質表現。我們發現,皮質酮接受器glucocorticoid receptor (GR)和mineralocorticoid receptor (MR)的表現,MR在運動之後有顯著下降,而調控皮質酮分泌的上游因子CRH及接受器CRH-R1 的表現,並沒有改變。神經滋養因子BDNF及其接受器TrkB的表現增加。根據以上的實驗結果,我們推論,皮質酮參與運動誘發的神經新生,可能是透過MR表現量的減少,進而促進BDNF的表現,造成BDNF/TrkB pathway的活化,以刺激神經新生。

     Recent findings have demonstrated that new functional neurons are constantly generated from neural stem cells in restricted areas of the mammalian brain throughout life. Previous studies have shown that voluntary exercise increased neuron proliferation, survival and differentiation in the hippocampus of adult mouse. However, the mechanisms underlying exercise-induced neurogenesis are unclear. Neurogenesis of dentate gyrus granule cells is known to be negatively regulated by glucocorticoids. Nevertheless, the effects of exercise training on serum glucocorticoid levels remain controversial. The objective of this study is to examine whether the exercise-induced neurogenesis is regulated by the serum level of corticosterone. The results showed that two-week exercise significantly induced neurogenesis in hippocampal dentate gyrus region as evident by double immunohistochemical stain of bromodeoxyuridine (BrdU) and doublecortin (DCX). Such effect was more pronounced in the mice exercised for five weeks. After eight-week exercise, the newborn neurons were lesser than five-week exercise. Although adrenalectomy (ADX) itself increased the number of BrdU/DCX positive cells, ADX lowered the exercise-induced neurogenesis number, suggesting the involvement of glucocorticoids in exercise-induced neurogenesis. Immediately after exercise, the concentration of serum corticosterone was elevated, but returned to physiological level within one hour. Five-week exercise training slightly increased the basal levels of plasma corticosterone. The expression level of MR was reduced significantly after five-week exercise, while the mRNA expression levels of CRH and CRH-R1 of the hypothalamus- pituitary-adrenal axis was not changed. Hippocampal BDNF and TrkB expressions were increased in exercise at 48 hours after five weeks of exercise. In conclusion, our results indicate that corticosterone participates in the exercise-induced neurogenesis. Corticosterone may reduce the expression of MR which, in turn, activats the BDNF/TrkB pathway to stimulate the neurogenesis.

    圖目錄 0 中文摘要 1 英文摘要 4 第一章緒論 7 第二章材料及方法 23 第三章實驗結果 44 第四章討論 53 第五章圖表 62 參考文獻 75

    1. Adlard P.A. & Cotman C.W. Voluntary exercise protects against
    stress-induced decreases in brain-derived neurotrophic factor protein
    expression. Neuroscience.124,985-992 (2004).
    2. Adlard P.A., Perreau V.M. & Cotman C.W. The exercise-induced
    expression of BDNF within the hippocampus varies across life-span.
    Neurobiol. Aging. 26,511-520 (2005).
    3. Akiyama K & Sutoo D. Rectifying effect of exercise on hypertension in
    spontaneously hypertensive rats via a calcium-dependent dopamine
    synthesizing system in the brain. Brain Res.823,154-160 (1999).
    4. Barnabe-Heider F & Miller F.D. Endogenously produced neurotrophins
    regulate survival and differentiation of cortical progenitors via distinct
    signaling pathways. J Neurosci. 23,5149-5160 (2003).
    5. Bayatti N, Hermann H, Lutz B& Behl C. Corticotropin-releasing
    hormone-mediated induction of intracellular signaling pathways and
    brain-derived neurotrophic factor expression is inhibited by the activation
    of the endocannabinoid system. Endocrinology.146, 1205-1213 (2005).
    6. Bayatti N, Zschocke J&Behl C. Brain region-specific neuroprotective
    action and signaling of corticotropin-releasing hormone in primary
    neurons. Endocrinology.144,4051-4060 (2003).
    7. Bejma J&Ji LL. Aging and acute exercise enhance free radical generation
    in rat skeletal muscle. J Appl Physiol. 87,465-70 (1999).
    8. Berchtold N.C., Chinn G, Chou M, Kesslak J.P.&Cotman C.W. Exercise
    primes a molecular memory for brain-derived neurotrophic factor protein
    induction in the rat hippocampus. Neuroscience. 133,853-861 (2005).
    9. Brunson K.L., Baram T.Z. & Bender R.A. Hippocampal neurogenesis is
    not enhanced by lifelong reduction of glucocorticoid levels. Hippocampus.
    15,491-501 (2005).
    10. Brunson K.L., Grigoriadis D.E., Lorang M.T. & Baram T.Z.
    Corticotropin-releasing hormone (CRH) downregulates the function of its
    receptor (CRF1) and induces CRF1 expression in hippocampal and
    cortical regions of the immature rat brain. Exp Neurol. 176,75-86 (2002).
    11. Bull N.D.&Bartlett P.F. The adult mouse hippocampal progenitor is
    neurogenic but not a stem cell. J Neurosci.25,10815-10821 (2005).
    12. Cameron H.A.&Gould E. Adult neurogenesis is regulated by adrenal
    steroids in the dentate gyrus. Neuroscience.61,203-9 (1994).
    13. Cameron H.A. & McKay R.D. Restoring production of hippocampal
    neurons in old age. Nat Neurosci.2,894-897 (1999).
    14. Carro E. et al. Circulation insulin-like growth factor-I mediates the
    protective effects of physical exercise against brain insults of different
    etiology and anatomy. J Neurosci. 21,5678-5684 (2001).
    15. Carro E. et al. Circulation insulin-like growth factor-I mediates effects of
    exercise on the brain. J Neurosci. 20,2926-2933(2000)
    16. Castren E, Berninger B, Leingartner A & Lindholm D. Regulation of
    brain-derived neurotrophic factor mRNA levels in hippocampus by
    neuronal activity. Prog Brain Res.117,57-64 (1998)
    17. Chao H.M., Choo P.H. & McEwen B.S. Glucocorticoid and
    mineralocorticoid receptor mRNA expression in rat brain. Neuroendocri.
    50,365-371 (1989).
    18. Chao H.M., Ma L.Y. & McEwen B.S., Sakai RR.Regulation of
    glucocorticoid receptor and mineralocorticoid receptor messenger
    ribonucleic acids by selective agonists in the rat hippocampus.
    Endocrinology.139, 1810-1814 (1998).
    19. Chen M.J. & Russo-Neustadt A.A. Exercise activates the
    phosphatidylinositol 3-kinase pathway. Brain Res Mol Brain Res.
    135,181-193 (2005).
    20. Cheng A, Wang S, Cai J, Rao M.S. & Mattson M.P. Nitric oxide acts in a
    positive feedback loop with BDNF to regulate neural progenitor cell
    proliferation and differentiation in the mammalian brain. Dev Biol.
    258,319-333 (2003).
    21. Christie B.R.&Cameron H.A. Neurogenesis in the adult hippocampus.
    Hippocampus.16,199-207 (2006)
    22. Cole M.A., et al. Selective blockade of the mineralocorticoid receptor
    impairs hypothalamic-pituitary-adrenal axis expression of habituation. J
    Neuroendocrinol.12,1034-1042 (2000).
    23. Coleman M.A, et al. Glucocorticoid response to forced exercise in
    laboratory house mice (Mus domesticus). Physiol Behav. 63279-285
    (1998).
    24. Conner J. et al. Distribution of bran-derived neurophic factor (BDNF)
    protein and mRNA in the normal adult rat CNS: evidence for anterograde
    axonal transport. J neurosci. 17,2295-2313 (1997).
    25. Cotman C.W. & Berchtold NC. Exercise: a behavioral intervention to
    enhance brain health and plasticity. Trends Neurosci. 25, 295-301 (2002).
    26. Cowan W.M., Stanfield B.B.& Kishi K. The development of the dentate
    gyrus. Curr Top Dev Biol. 15,103-157 (1980).
    27. Deogracias R, Espliguero G, Iglesias T&Rodriguez-Pena A. Expression of
    the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway
    in neurons. Mol Cell Neurosci. 6,470-480 (2004).
    28. Diamond D.M., Bennett M.C., Fleshner M& Rose G.M. Inverted-U
    relationship between the level of peripheral corticosterone and the
    magnitude of hippocampal primed burst potentiation. Hippocampus.
    2,421-430 (1992).
    29. Droste SK, et al. Effects of long-term voluntary exercise on the mouse
    hypothalamic-pituitary-adrenocortical axis. Endocrinology.144,3012-3023
    (2003).
    30. Egan M.F. et al. The BDNF val66met polymorphism affects
    activity-dependent secretion of BDNF and human memory and
    hippocampal function. Cell 112,257-269 (2003).
    31. Eriksson P.S. et al. Neurogenesis in the adult human hippocampus.
    32. Farman N. Molecular and cellular determinants of mineralocorticoid
    selectivity. Curr Opin Nephrol Hypertens.8,45-51 (1999).
    33. Farmer J, Zhao X, van Praag H, Wodtke K, Gage F.H. & Christie B.R.
    Effects of voluntary exercise on synaptic plasticity and gene expression in
    the dentate gyrus of adult male Sprague-Dawley rats in vivo.
    Neuroscience.124,71-79 (2004).
    34. Fediuc S, Campbell J.E & Riddell M.C. Effect of voluntary wheel
    running on circadian corticosterone release and on HPA axis
    responsiveness to restraint stress in Sprague-Dawley rats. J Appl Physiol.
    100, 1867-1875 (2006)
    35. Fischer AK, et al. The prototypic mineralocorticoid receptor agonist
    aldosterone influences neurogenesis in the dentate gyrus of the
    adrenalectomized rat. Brain Res.947,290-293 (2002).
    36. Fordyce D.E.&Farrar R.P. Effect of physical activity on hippocampal high
    affinity choline uptake and muscarinic binding: a comparison between
    young and old F344 rats. Brain Res.541,57-62 (1991).
    37. Garcia A., Steiner B.& Kronenberg G., Bick-Sander A.&Kempermann G.
    Age-dependent expression of glucocorticoid- and mineralocorticoid
    receptors on neural precursor cell populations in the adult murine
    hippocampus. Aging Cell.3,363-71 (2004).
    38. Gass P, et al. Genetic disruption of mineralocorticoid receptor leads to
    impaired neurogenesis and granule cell degeneration in the hippocampus
    of adult mice. EMBO Rep.1,447-451 (2000).
    39. Gesing A, et al. Psychological stress increases hippocampal
    mineralocorticoid receptor levels: involvement of corticotropin-releasing
    hormone. J Neurosci. 21,4822-4829 (2001).
    40. Gomen-Pinnila F. et al. Voluntary exercise induces a BDNF-mediated
    mechanism that promotes neuroplasticity. J Neurophysiol. 88,2187-2195
    (2002).
    41. Gould E, et al. Adrenal steroids regulate postnatal development of the rat
    dentate gyrus: II. Effects of glucocorticoids and mineralocorticoids on cell
    birth. J Comp Neurol.313,486-493 (1991).
    42. Gould E, et al. Adrenal steroids regulate postnatal development of the rat
    dentate gyrus: I. Effects of glucocorticoids on cell death. J Comp Neurol.
    313, 479-485 (1991).
    43. Grundy PL, et al. Glucocorticoids modulate BDNF mRNA expression in
    the rat hippocampus after traumatic brain injury. Neuroreport.
    11,3381-3384 (2000).
    44. Han F, et al. Colocalization of mineralocorticoid receptor and
    glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci
    Res. 51,371-81 (2005).
    45. Hansson AC, et al. Corticosterone actions on the hippocampal
    brain-derived neurotrophic factor expression are mediated by exon IV
    promoter. J Neuroendocrinol. 18,104-114 (206).
    46. Hansson AC, et al. Gluco- and mineralocorticoid receptor-mediated
    regulation of neurotrophic factor gene expression in the dorsal
    hippocampus and the neocortex of the rat. Eur J Neurosci. 12, 2918-2934
    (2000).
    47. Herman J.P., Ostrander M.M., Mueller N.K. & Figueiredo H. Limbic
    system mechanisms of stress regulation: hypothalamo- pituitary-
    adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry.
    29,1201-1213 (2005).
    48. Herman JP. Regulation of adrenocorticosteroid receptor mRNA expression
    in the central nervous system. Cell Mol Neurobiol. 13,349-372 (1993).
    49. Holmes M.M., Galea L.A., Mistlberger R.E.& Kempermann G. Adult
    hippocampal neurogenesis and voluntary running activity: circadian and
    dose-dependent effects. J Neurosci Res.76,216-222 (2004).
    50. Hu Z, et al. Adrenalectomy- induced granule cell death is predicated on the
    disappearance of glucocorticoid receptor immunoreactivity in the rat
    hippocampal granule cell layer. Brain Res.778,293-301(1997).
    51. Issa A.M., ROWE W., Gauthier S. & Meaney M.J.
    Hypothalamic-pituitary-adrenal activity in aged,cognitively impaired and
    cognitively unimpaired rats. J Neurosci. 10,3247-3254 (1990).
    52. Jiaxu C & Weiyi Y. Influence of acute and chronic treadmill exercise on
    rat brain POMC gene expression. Med Sci Sports Exerc. 32, 954-957
    (2000).
    53. Kalman B.A.&Spencer R.L. Rapid corticosteroid-dependent regulation of
    mineralocorticoid receptor protein expression in rat brain.
    Endocrinology.143,4184-4195 (2002).
    54. Kaplan M.S. & Hinds J.W. Neurogenesis in the adult rat: electron
    microscopic analysis of light radioautographs. Science. 197, 1092-1094
    (1977).
    55. Karege F.et al. Decreased serum brain-derivrd neurotrophic factor levels in
    the major depressed patients. Psychiatry Res. 109,143-148 (2002).
    56. Kempermann G, Kuhn H.G.& Gage F.H. More hippocampal neurons in
    adult mice living in an enriched environment. Nature.386,493-495 (1997).
    57. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and
    locomotor activity in mice. EMBO J.19,1290-1300 (2000).
    58. Kim S.H., et al. Treadmill exercise increases cell proliferation without
    altering of apoptosis in dentate gyrus of Sprague-Dawley rats. Life Sci.
    71,1331-1340 (2002).
    59. Korte M, et al. Hippocampal long-term potentiation is impaired in mice
    lacking brain-derived neurotrophic factor. Proc Natl Acad Sci. 92,
    8856-8860 (1995).
    60. Kronenberg G, et al. Physical exercise prevents age-related decline in
    precursor cell activity in the mouse dentate gyrus. Neurobiol Aging. In
    Press.
    61. Kuhn HG, Dickinson-Anson H & Gage FH. Neurogenesis in the dentate
    gyrus of the adult rat: age-related decrease of neuronal progenitor
    proliferation. J Neurosci. 16,2027-2033 (1996).
    62. Laurin D. et al. Physical activity and risk of congitive impairment and
    dementia in elderly persons. Arch Neurol. 58,498-504 (2001).
    63. Lee J, Duan W & Mattson M.P. Evidence that brain-derived neurotrophic
    factor is required for basal neurogenesis and mediates, in part, the
    enhancement of neurogenesis by dietary restriction in the hippocampus of
    adult mice. J Neurochem. 82,1367-1375 (2002).
    64. Levine S. The pituitary-adrenal system and the developing brain. Prog
    Brain Res.32,79-85 (1970).
    65. Lim D.A. et al. Noggin antagonizes BMP signaling to create a niche for
    adult neurogenesis. Neuron 28,713-726 (2000).
    66. Lim D.A. et al. Noggin antagonizes BMP signaling to create a niche for
    adult neurogenesis. Neuron 28,713-726 (2000).
    67. Linnarsson S, Bjorklund A & Ernfors P. Learning deficit in BDNF
    mutant mice. Eur J Neurosci. 9,2581-2587 (1997).
    68. Lissarsson S., Wilson C.A. & Ernfors P. Cell death in regenerating
    populations of neurons in BDNF mutant mice. Brain Res Mol. Brain Res.
    75, 61-69 (2000).
    69. Llorens-Martin M, Torres-Aleman I& Trejo J.L. Pronounced individual
    variation in the response to the stimulatory action of exercise on immature
    hippocampal neurons. Hippocampus. 16,480-490 (2006).
    70. Luger A, et al. Acute hypothalamic-pituitary-adrenal responses to the
    stress of treadmill exercise. Physiologic adaptations to physical training.
    N Engl J Med. 316,1309-1315 (1987).
    71. Lupien S.J . et al. Cortisol levels during human aging predict hippocampal
    atrophy and memory deficits. Nat Neurosci 1,69-73 (1998).
    72. Maccari S, et al. Hippocampal type I and type II corticosteroid receptors
    are modulated by central noradrenergic systems.
    Psychoneuroendocrinology. 17, 103-112 (1992).
    73. Mattson MP, Maudsley S & Martin B. BDNF and 5-HT: a dynamic duo
    in age-related neuronal plasticity and neurodegenerative disorders. Trends
    Neurosci. 27,589-594 (2004).
    74. Mirescu C& Gould E. Stress and adult neurogenesis. Hippocampus.
    16,233-238 (2006).
    75. Mizuno M.,et al. Involvement of BDNF receptor TrkB in spatial memory
    formation. Learn Mem. 10,108-115 (2003).
    76. Molteni R, Ying Z&Gomez-Pinilla F. Differential effects of acute and
    chronic exercise on plasticity-related genes in the rat hi ppocampus
    revealed by microarray. Eur J Neurosci. 16,107-1116 (2002).
    77. Montaron M.F. et al. Implication of corticosteroid receptors in the
    regulation of hippocampal structural plasticity. Eur J Neurosci.
    18,3105-3111 (2003).
    78. Nakashima K. et al. BMP-2mediated alteration in the developmental
    pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis.
    Proc Natl Acad Sci. 98,5868-5873 (2001).
    79. Naylor A.S, et al. Extended voluntary running inhibits exercise-induced
    adult hippocampal progenitor proliferation in the spontaneously
    hypertensive rat. J Neurophysiol. 93,2406-2414 (2005).
    80. Neeper S.A, Gomez-Pinilla F, Choi J& Cotman C.W. Exercise and brain
    neurotrophins. Nature. 373,109 (1995).
    81. Neeper S.A., Gomez-Pinilla F, Choi J&Cotman C.W. Physical activity
    increases mRNA for brain-derived neurotrophic factor and nerve growth
    factor in rat brain. Brain Res.726,49-56 (1996).
    82. Nibuya M., Morinobu S.&Duman R.S. Regulation of BDNF and trkB
    mRNA in rat brain by chronic electroconvulsive seizure and antidepressant
    drug treatment. J Neurosci. 15,7539-7547 (1995).
    83. Nichols N.R, Zieba M& Bye N. Do glucocorticoids contribute to
    brain aging? Brain Res. Brain Res. Rev. 37, 273-86 (2001).
    84. Park E, et al. Changes in basal hypothalamo-pituitary-adrenal activity
    during exercise training are centrally mediated. Am J Physiol Regul Integr
    Comp Physiol.289,1360-1371 (2005).
    85. Pavlides C, Ogawa S, Kimura A & McEwen B.S. Role of adrenal steroid
    mineralocorticoid and glucocorticoid receptors in long-term potentiation in
    the CA1 field of hippocampal slices. Brain Res. 738,229-235 (1996).
    86. Pavlides C, Watanabe Y, Magarinos A.M.& McEwen B.S. Opposing roles
    of type I and type II adrenal steroid receptors in hippocampal long-term
    potentiation. Neuroscience.68,387-394 (1995).
    87. Pencea V, Bingaman K.D., Wiegand S.J.& Luskin M.B.Infusion of
    brain-derived neurotrophic factor into the lateral ventricle of the adult rat
    leads to new neurons in the parenchyma of the striatum, septum, thalamus,
    and hypothalamus. J Neurosci. 21,6706-6717 (2001).
    88. Pizzorusso T., Ratto G.M., Putignano E.& Maffei L. Brain-derived
    neurophic factor causes cAMP response element binding protein
    phosphorylation in absence of calcium increases in slices and cultured
    neurons from rat visual cortex. J Neurosci. 20,2809-2816 (2000).
    89. Prickaerts J,et al. Chronic corticosterone manipulations in mice affect
    brain cell proliferation rates, but only partly affect BDNF protein levels.
    Neurosci Lett.396,12-16 (2006).
    90. Radecki D.T., Brown L.M., Martinez J., Teyler T.J. BDNF protects against
    stress-induced impairments in spatial learning and memory and LTP.
    Hippocampus. 15,246-253 (2005).
    91. Ratka A, Sutanto W, Bloemers M & de Kloet E.R. On the role of brain
    mineralocorticoid (type I) and glucocorticoid (type II) receptors in
    neuroendocrine regulation. Neuroendocrinology. 50,117-123 (1989).
    92. Ray A& Prefontaine K.E. Physical association and functional antagonism
    between the p65 subunit of transcription factor NF-kappa B and the
    glucocorticoid receptor. Proc Natl Acad Sci.91,752-756 (1994).
    93. Reinhardt R.R. & Bondy C.A. Insulin-like growth factor cross the
    blood-brain barrier. Endocrinology. 135,1753-1761 (1994).
    94. Russo-Neustadt A., Beard R.C.&Cotman C.W. Exercise,antidepressant
    medications,and enhanced brain derived neurotrophic factor expression.
    Neuropsychopharmacology. 21,679-682 (1999).
    95. Santi N. et al. Unique astrocyte ribbon in the adult brain contains neural
    stem cells but lacks chain migration. Nature 421,740-744 (2004).
    96. Sapolsky R.M .Do glucocorticoid concentrations rise with age in the rat?
    Neurobiol Aging.13,171-174 (1992).
    97. Sapolsky R.M., Krey l.c.&McEwen B.S. The neuroendocrinology of
    stress and aging:the glucorticoid cascade hypothesis. Endocri. Rev.
    7,284-301 (1986).
    98. Schaaf M.J., de Jong J, de Kloet E.R. & Vreugdenhil E. Downregulation
    of BDNF mRNA and protein in the rat hippocampus by corticosterone.
    Brain Res.813,112-120 (1998).
    99. Scharfman H, et al. Increased neurogenesis and the ectopic granule cells
    after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 192,
    348-356 (2005).
    100. Schinder A.F.&Poo M. The neurotrophin hypothesis for synaptic plasticity.
    Trends Neurosci.23,639-645 (2000).
    101. Schlessinger A.R.& Cowan W.M., Gottlieb DI. An autoradiographic
    study of the time of origin and the pattern of granule cell migration in the
    dentate gyrus of the rat. J Comp Neurol. 159,149-175 (1975)
    102. Schule R, et al. Functional antagonism between oncoprotein c-Jun and the
    enhances neurogenesis, learning, and long-term potentiation in mice. Proc
    Natl Acad Sci. 96,13427-13431 (1999).
    103. van Praag H, Kempermann G& Gage F.H. Running increases cell
    proliferation and neurogenesis in the adult mouse dentate gyrus. Nat
    Neurosci. 2,266-270 (1999).
    104. Visser D.T. et al. The alteration of glucocorticoid receptor-
    immunoreactivity in the rat forebrain following short-term and long-term
    adrenalectomy. Brain Res. 729, 216-222 (1996).
    105. Voigt K, et al. Hormonal responses to exhausting physical exercise: the
    role of predictability and controllability of the situation.
    Psychoneuroendocrinology. 15,173-184 (1990).
    106. West A.E., Griffith E.C.& Greenberg M.E. Regulation of transcription
    factors by neuronal activity. Nat Rev Neurosci. 3,921-931 (2002).
    107. Widenfalk J, Olson L & Thoren P. Deprived of habitual running, rats
    downregulate BDNF and TrkB messages in the brain. Neurosci Res.
    34,125-132 (1999).
    108. Wong E.Y. & Herbert J. Raised circulating corticosterone inhibits
    neuronal differentiation of progenitor cells in the adult hippocampus.
    Neuroscience.137,83-92 (2006).
    109. Wong E.Y.& Herbert J. Roles of mineralocorticoid and glucocorticoid
    receptors in the regulation of progenitor proliferation in the adult
    hippocampus. Eur J Neurosci. 22,785-792 (2005).
    110. Wong E.Y.& Herbert J. The corticoid environment: a determining factor
    for neural progenitors' survival in the adult hippocampus. Eur J
    Neurosci.20,2491-2498 (2004).
    111. Yang-Yen H.F.,Chiu R & Karin M. Elevation of AP1 activity during F9
    cell differentiation is due to increased c-jun transcription. New Biol.
    2,351-361 (1990).
    112. Yau J.L. & Seckl J.R. Central 6-hydroxydopamine lesions decrease
    mineralocorticoid, but not glucocorticoid receptor gene expression in the
    rat hippocampus. Neurosci Lett. 142,159-162 (1992).
    113. Yoshimura S. et al. FGF-2 regulation of neurogenesis in adult
    hippocampus after brain injury. Proc Natl Acad Sci. 98,5874-5879 (2001).

    無法下載圖示 校內:3005-07-12公開
    校外:3005-07-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE