| 研究生: |
梅立人 Mei, Li-Then |
|---|---|
| 論文名稱: |
添加LiF對CaCu3Ti4O12的介電、導電和顯微結構的影響 Effects of LiF addition on dielectric properties, conductivity, and microstructure of CaCu3Ti4O12 |
| 指導教授: |
方滄澤
Fang, Tsang-Tse 向性一 Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 介電常數 、介電損失 |
| 外文關鍵詞: | Dielectric Constant, CaCu3Ti4O12, tangent loss |
| 相關次數: | 點閱:55 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CaCu3Ti4O12具有很高及對溫度變化率低(100-400K)的介電常數,此性質極符合電子元件的實際應用規格如X5R。但其介電損失過大,使其無法完全符合應用規格。本研究為探討CaCu3Ti4O12的高介電來源和添加氟化鋰對CaCu3Ti4O12的影響,希望能找出使產品有較好的性質及可靠度之製程和材料配方。
CaCu3Ti4O12 which exhibits a large dielectric constant and the dielectric constant is weakly varying in the temperature range 100~400K. This property is conformed to the electronic component’s application specification, for example X5R.But the large tangent loss makes it can not conform to the application specification. This study is to investigate the origin of high permittivity in CaCu3Ti4O12 and the effects of LiF addition to CaCu3Ti4O12. Through these investigations a large resistivity and process in preparing for CaCu3Ti4O12 could be suggested.
[1] A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. France, 11, 4077 (1967).
[2] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases”, J. Solid State Chem., 151, 2, 323-325 (2000).
[3] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, “CaCu3Ti4O12:One-step internal barrier layer capacitor”, Appl. Phys. Lett., 80, 12, 2153-2155 (2002).
[4] T. T. Fang, H. K. Shiau, “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12”, J. Am. Ceram. Soc., 87, 11, 2072-2079 (2004)
[5] T. T. Fang, L. T. Mei, H. F. Ho, “Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12”, Acta Materialia, 54, 10, 2867-2875 (2006)
[6] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edition, John Wiley & Sons, New York (1976)
[7] M. W. Barsoum, “Fundamentals of Ceramics”, McGraw-Hill, Singapore, p526-543 (1997)
[8] C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequenies”, Phys. Rev., 83, 1, 121-124 (1951)
[9] A. J. Moulson, J. M. Herbert, “Electroceramics Materials, properties, applications”, Chapman and Hall, New York, p256-262 (1990)
[10] 邱碧秀, “電子陶瓷材料”, 徐氏基金會, 臺北巿, p129-153 (1988)
[11] D. C. Sinclair, A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance”, J. Appl. Phys., 66, 8, 3850-3856 (1989)
[12] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M. Shapiro, “Giant dielectric constant response in a copper-titanate”, Solid State Communications, 115, 217-220 (2000)
[13] C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, “Optical Response of High-Dielectric-Constant perovskite-Relative Oxide”, Science 293, 673-676 (2001).
[14] P. Lunkenheimer , V. Bobnar, A. V. Pronin, A. I.Ritus, A. A. Volkov, A. Loidl, “Origin of apparent colossal dielectric constants”, Phys. Rev. B, 66, 052105-(1-4) (2002)
[15] M. H. Cohen, J. B. Neaton, L. He, D. Vanderbilt, “Extrinsic models for the dielectric response of CaCu3Ti4O12”, J. Appl. Phys., 94, 5, 3299-3306 (2003)
[16] T. B. Adams, D.C. Sinclair, A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12”, Adv. Mater., 14, 18, 1321-1323 (2002).
[17] L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, “Defect structure of the high-dielectric-constant perovskite CaCu3Ti4O12”, Phys. Rev. B 71, 014118-(1-7) (2005)
[18] J. Li, A.W. Sleight, M. A. Subramanian, “Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12”, Solid State Communications, 135, 4, 260-262 (2005)
[19] B. Bochu, M.N. Deschizeaux, J.C. Joibert, “Synthése et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12”, J. Solid State Chem., 29, 291 (1979)
[20] S. M. Moussa, B. J. Kennedy, “Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3”, Materials Research Bulletin, 36, 13-14, 2525-2529 (2001).
[21] Awatef Hassini, Monique Gervais, Jérôme Coulon, Vinh Ta Phuoc, Francois Gervais, “Synthesis of Ca0.25Cu0.75TiO3 and infrared characterization of role played by copper”, Materials Science and Engineering B, 87, 2, 164-168 (2001).
[22] L. He, J.B. Neaton, M. H. Cohen, D. Vanderbilt, C. C. Homes “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12”, Phys. Rev. B, 65, 214112-(1-11) (2002)
[23] N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, M. N. Iliev, “Raman spectroscopy of CaCu3Ti4O12”, Phys. Rev. B, 66, 132102 (2002)
[24] M. A. Subramanian, A. W. Sleight, “ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy”, Solid State Sciences 4, 3, 347-351 (2002)
[25] 鈣鈦礦CaCu3Ti4O12之介電及電性的研究,蕭旭凱,國立成功大學材料及工程研究所碩士論文 (2003)