簡易檢索 / 詳目顯示

研究生: 謝宜
Hsieh, Yi-Yun
論文名稱: 以快速加熱法合成含氮拆層石墨及其應用在質子交換膜燃料電池之陰極觸媒特性
Rapid Thermal Synthesis of N-doped Exfoliated Graphite and the Properties for Its Application on the Cathodic Catalyst in Proton Exchange Membrane Fuel Cell
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 184
中文關鍵詞: 快速加熱法含氮拆層石墨陰極觸媒質子交換膜燃料電池
外文關鍵詞: Rapid thermal synthesis, Nitrogen-doped exfoliated graphite, Cathodic catalyst, Proton exchange membrane fuel cell
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以拆層石墨作為觸媒擔體,透過氮原子摻入法,增加拆層石墨表面活性座數量,減小白金粒徑,提升白金分散性,並增強白金顆粒的比活性,以獲得質子交換膜燃料電池高活性的氧氣還原觸媒。 本研究將PVP與氧化石墨烯混摻後,使用快速加熱法合成含氮拆層石墨,作為擔體擔載白金,探討裂解時間、裂解溫度,和PVP與氧化石墨烯混摻比等條件對觸媒特性之影響。將最佳條件之含氮拆層石墨,與毛球狀碳材混摻後擔載白金,探討混摻重量比對觸媒活性及質子交換膜燃料電池效能影響。
    實驗結果顯示,在PVP與氧化石墨烯混摻重量比為2:1,裂解溫度1000oC,裂解時間20分鐘的含氮拆層石墨有最小D/G值1.58;含氮拆層石墨擔體觸媒比未含氮的拆層石墨觸媒,具有較佳白金分散性、較小白金粒徑及較佳的觸媒活性;裂解溫度1000oC,裂解時間1分鐘合成含氮拆層石墨擔體,擔載白金觸媒後層間距相較於未摻雜的石墨烯(0.345 nm)可達0.368 nm。
    裂解溫度為900oC,裂解時間為5分鐘,合成含氮拆層石墨擔體之白金觸媒,有最大質量活性,其0.65、0.7及0.75 V (vs. Ag/AgCl)下的質量活性,分別為0.82、2.34及5.75 A/g Pt;而氮摻雜的鍵結型態pyridinic-N、pyrrolic-N、quaternary-N及pyridinic-N-O含量總和與質量活性呈現中度正相關。將此最佳合成條件含氮拆層石墨與毛球狀碳材混摻並擔載白金。半電池測試結果顯示,混摻重量比1:1所得的觸媒有最大電化學活性面積209.7 C/g Pt,最正的起始電位0.789 V (vs. Ag/AgCl),及在0.65 V (vs. Ag/AgCl)下有最大質量活性9.66 A/g Pt,為商用觸媒Johnson Matthey 1.44倍。單電池測試結果,混摻重量比1:1的觸媒有最小電荷轉移電阻、最小陰極阻抗及最大之最大放電功率,最大放電功率為商用觸媒的1.19倍。

    Exfoliated graphite was used as the carbon support in this study. Nitrogen-doping was applied to increase active sites, decrease Pt particle size, facilitate Pt dispersion, and enhance the specific activity of the active site, thereby high catalytic activity of oxygen reduction was obtained for proton exchange membrane fuel cells (PEMFC).
    Nitrogen-doped exfoliated graphite was synthesized by rapid thermal method of polyvinylpyrrolidone (PVP)-graphite oxide (GO) blend and used as a catalyst support. The effects of pyrolysis time, pyrolysis temperature, and the weight ratio of PVP to GO on the catalyst properties and electrochemical activity were explored. Nitrogen-doped exfoliated graphite fabricated in the optimum condition was then blended with fluffy-like carbon. The effects of the fluffy-like carbon content on the catalyst activity and the performance of PEMFC were investigated.
    The experimental results show that the smallest D/G (1.58) was obtained for the nitrogen-doped exfoliated graphite which was synthesized with PVP/graphite oxide ratio of 2:1 at 1000 oC for 20 min. The nitrogen-doped exfoliated graphite give better dispersion, smaller particle size and better catalytic activity than exfoliated graphite without nitrogen-doping. The interlayer spacing was 0.368 nm for the nitrogen-doped exfoliated graphite synthesized at 1000 oC for 1 min, compared to 0.345 nm for the exfoliated graphite without nitrogen doping.
    From electrochemical analysis, after Pt loading on the nitrogen-doped exfoliated graphite which was synthesized with PVP/GO = 2 at 900oC for 5 minutes showed the highest mass activity 0.82, 2.34 and 5.75 A/g Pt at 0.75, 0.7 and 0.65 V(vs. Ag/AgCl), respectively. The total content of pyridinic-N, pyrrolic-N,quaternary-N and pyridinic-N-O of doping nitrogen showed moderately positive correlation with mass activities.
    A composite was prepared with the best N-doped exfoliated graphite and fluffy-like carbon at a weight ratio of 1:1. The loading of Pt on this composite showed the largest electrochemical surface area 209.7 C/g Pt and the most positive onset potential. At 0.65 V (vs.Ag/AgCl), this catalyst also gave the highest mass activity 9.66 A/g Pt, about 44% increase comparing to that from a commercial catalyst (Johnson Matthey). In single cell tests, this catalyst had the smallest charge transfer resistance, cathode resistance, and 19% increase in maximum power density comparing to the commercial catalyst.

    摘 要 I Abstract II 致 謝 IV 目 錄 V 圖目錄 IX 表目錄 XVI 符號說明 XVIII 第一章 緒論 1 1.1前言 1 1.2燃料電池簡介 2 1.2.1 燃料電池起源 2 1.2.2 燃料電池特色 2 1.2.3 燃料電池種類 3 1.3 質子交換膜燃料電池現況與挑戰 7 第二章 原理與文獻回顧 10 2.1質子交換膜燃料電池原理 10 2.1.1 質子交換膜 11 2.1.2 陽極觸媒材料 11 2.1.3 陰極觸媒材料 12 2.1.4 氧氣還原機制 12 2.1.5 電池放電極化現象 15 2.1.6 電池阻抗分析 18 2.1.6.1 極化曲線分析 18 2.1.6.2 交流阻抗分析 19 2.1.7 參考電極的應用 25 2.2 觸媒載體 28 2.2.1 碳黑 28 2.2.2 多孔性碳材 29 2.2.3 奈米碳管 29 2.2.4 毛球型碳材 30 2.2.5 石墨烯及拆層石墨 31 2.2.5.1 拆層石墨及石墨烯製備方法 31 2.2.5.2 修飾石墨烯及拆層石墨方法 32 2.3 研究動機 36 第三章 實驗方法 38 3.1 研究樣品之命名 38 3.2 藥品 38 3.3 實驗儀器 40 3.4 實驗步驟 42 3.4.1 氧化石墨烯製備 42 3.4.2 聚乙烯吡咯烷酮(PVP)修飾氧化石墨烯 42 3.4.3 快速加熱法 44 3.4.4 毛球狀碳材之製備 45 3.4.5 毛球狀碳材之酸洗 45 3.4.6 白金觸媒之製備 46 3.4.7 觸媒之電化學活性測試 47 3.4.7.1 半電池電極與觸媒漿料製備 47 3.4.7.2 循環伏安法 48 3.4.7.3 線性掃描法 48 3.4.8 單電池放電測試 49 3.4.8.1 質子交換膜前處理 49 3.4.8.2 單電池參考電極製備 50 3.4.8.3 單電池電極與觸媒漿料製備 51 3.4.8.4 膜電極組熱壓製備 52 3.4.8.5 單電池極化曲線分析 52 3.4.9 交流阻抗分析 54 3.4.10 觸媒材料之鑑定與分析 54 3.4.10.1 接觸角 54 3.4.10.2 穿透式電子顯微鏡 54 3.4.10.3 掃描式電子顯微鏡 54 3.4.10.4 全反射-傅立葉轉換紅外線光譜 55 3.4.10.5 拉曼光譜 56 3.4.10.6 X光電子能譜儀 56 3.4.10.7 X光繞射繞射儀 57 3.4.10.8 熱重分析儀 57 3.4.10.9 元素分析儀 57 3.4.10.10 碳材吸附面積測試 57 第四章 結果與討論 58 4.1 PVP與氧化石墨烯混摻 58 4.1.1 FTIR 58 4.1.2 接觸角分析 59 4.1.3 X光繞射儀 60 4.2 含氮拆層石墨 61 4.2.1 裂解時間對觸媒特性影響 62 4.2.1.1 FTIR 62 4.2.1.2 拉曼光譜 63 4.2.1.3 接觸角 65 4.2.1.4 XPS及元素分析 66 4.2.1.5 TEM 70 4.2.1.6 X光繞射儀 78 4.2.1.7 觸媒活性測試 80 4.2.2 裂解溫度對觸媒特性影響 91 4.2.2.1 FTIR 92 4.2.2.2 拉曼光譜 93 4.2.2.3 接觸角 93 4.2.2.4 XPS及元素分析 95 4.2.2.5 TEM 98 4.2.2.6 X光繞射儀 103 4.2.2.7 觸媒活性測試 104 4.2.3 PVP與氧化石墨烯重量比對觸媒特性影響 117 4.2.3.1 FTIR 117 4.2.3.2 拉曼光譜 117 4.2.3.3 接觸角分析 119 4.2.3.4 XPS及元素分析 119 4.2.3.5 TEM 121 4.2.3.6 X光繞射儀 123 4.2.3.7 觸媒活性測試 124 4.3 含氮拆層石墨與毛球狀碳材混摻比例對觸媒活性影響 133 4.3.1 接觸角 133 4.3.2 SEM 134 4.3.3 觸媒活性測試 134 4.3.4 單電池測試與交流阻抗分析 142 第五章 結論 154 參考文獻 156 附錄一 延伸摘要 170 附錄二 接觸角分析圖 180

    1. A. B. Stambouli, Fuel cells: The expectations for an environmental-friendly and sustainable source of energy, Renewable and Sustainable Energy Reviews, 2011, 15, 4507-4520.
    2. 楊志忠, 燃料電池發展現況 科學發展 367期, 2003.
    3. 楊顯整, 燃料電池應用與產業發展現況, 綠基會通訊, 2012.
    4. J. M. Andújar and F. Segura, Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 2009, 13, 2309-2322.
    5. E. H. Yu, X. Wang, U. Krewer, L. Li and K. Scott, Direct oxidation alkaline fuel cells: from materials to systems, Energy & Environmental Science, 2012, 5, 5668.
    6. M. Warshay and P. Prokopius, The Fuel Cell in Space: Yesterday, Today and Tomorrow, 1989.
    7. 經濟部能源局, 我國重點能源科技研發動向及策略, 2005.
    8. IEA Advanced Fuel Cells, 2012.
    9. U. S. DOE, HYDROGEN AND FUEL CELL TECHNOLOGIES.
    10. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, Alternative Polymer Systems for Proton Exchange Membranes, Chem. Rev, 2004, 104, 4587-4612.
    11. Z. Jusys, J. Kaiser and R. J. Behm, Composition and activity of high surface area PtRu catalysts towards, Electrochimica Acta, 2002, 47, 3693-3706.
    12. K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn and S. I. Woo, Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media, Electrochemistry Communications, 2010, 12, 1052-1055.
    13. R. I. Jafri, N. Rajalakshmi and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, Journal of Materials Chemistry, 2010, 20, 7114-7117.
    14. P. Gouérec, M. C. Denis, D. Guay, J. P. Dodelet and R. Schulz, High Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel, Journal of The Electrochemical Society,, 2000, 147, 3989-3996.
    15. D. C. Papageorgopoulos, M. Keijzer and F. A. d. Bruijn, The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported, Electrochimica Acta, 2002, 48, 197-204.
    16. T. S. Olson, B. Blizanac, B. Piela, J. R. Davey, P. Zelenay and P. Atanassov, Electrochemical evaluation of porous non-platinum oxygen reduction catalysts for polymer electrolyte fuel cells, Fuel Cells, 2009, 9, 547-553.
    17. J.-Y. Choi, D. Higgins and Z. Chen, Highly durable graphene nanosheet supported Iron catalyst for oxygen reduction reaction in PEM Fuel Cells, J Electrochem Soc, 2012, 159, B87-B90.
    18. E. Yeager, ELECTROCATALYSTS FOR O2 REDUCTION, Eletrochimica Acta, 1984, 29, 1527-1537.
    19. T. Toda, H. Igarashi, H.Uchida and M. Watanabe, Enhancement of the Electroreduction of Oxygen on Pt Alloys, Journal of The Electrochemical Society, 1999, 146, 3750-3756.
    20. H. S. Wroblowa, Y. C.Pan and G. Razumney, ELECTROREDUCTION OF OXYGEN A NEW MECHANISTIC CRITERION, J. Electroanal, 1976, 69, 195-201.
    21. L. Zhang and Z. Xia, Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells, The Journal of Physical Chemistry C, 2011, 115, 11170-11176.
    22. Y. W. Rho and S. Srinivasan, Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O2-He, O2-Ar, and O2-N2 Mixtures II.
    23. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2001.
    24. D. M. Bernardi and M. W. Verbrugge, A mathematical model of the solid-polymer-electrolyte fuel cell, J Electrochem Soc, 1992, 139, 2477-2490.
    25. T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valeria and S. Gottesfeld, A Comparative Study of Water Uptake By and Transport.
    26. A. Oedegaard, C. Hebling, A. Schmitz, S. Møller-Holst and R. Tunold, Influence of diffusion layer properties on low temperature DMFC, Journal of Power Sources, 2004, 127, 187-196.
    27. K. W. Park, B. K. Kwon, J. H. Choi, I. S. Park, Y. M. Kim and Y. E. Sung, New RuO2 and carbon–RuO2 composite diffusion layer for use in direct methanol fuel cells, J. Power Sources, 2002, 109, 439-445.
    28. T. Bewer, T. Beckmann, H. Dohle, J. Mergel and D. Stolten, Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution, Journal of Power Sources, 2004, 125, 1-9.
    29. J. Kim, S.-M. Lee, S. Srinivasan and C. E. Chamberlin, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J Electrochem Soc, 1995, 142, 2670-2674.
    30. J. Kim, S. Lee and S. Srinivasan, Modeling of Proton Exchange Membrane Fuel Cell, J. Electrochem. Soc., 1995, 142, 2670-2674.
    31. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, 2005.
    32. 林賜岱, 直接甲醇燃料電池陽極反應之研究, 國立台灣科技大學化學工程學系碩士論文, 2002.
    33. C. M. Brett and M. O. Breet, Electrochemistry: Principles, Methods, and Applications, Oxford, New York, 1993, 405.
    34. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, 2004.
    35. J. Newman, Electrochemical systems prentice-hall, Englewood Cliffs, 1991, 380.
    36. 楊志忠、林頌恩、韋文誠, 燃料電池發展現況, 科學發展, 2003, 367期, 30-33.
    37. M. Chisaka, T. Iijima, A. Tomita, T. Yaguchi and Y. Sakurai, Oxygen Reduction Reaction Activity of Vulcan XC-72 Doped with Nitrogen under NH3 Gas in Acid Media, Journal of The Electrochemical Society, 2010, 157, B1701.
    38. J. Li, L. Ma, X. Li, C. Lu and H. Liu, Effect of Nitric Acid Pretreatment on the Properties of Activated, Ind. Eng. Chem. Res., 2005, 44, 5478-5482.
    39. G. Wu, D. Li, C. Dai, D. Wang and N. Li, Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell-Core Nanostructured Carbon for Methanol Electrooxidation, Langmuir : the ACS journal of surfaces and colloids, 2008, 24, 3566-3575.
    40. H. Yamada, T. Hirai, I. Moriguchi and T. Kudo, A highly active Pt catalyst fabricated on 3D porous carbon, Journal of Power Sources, 2007, 164, 538-543.
    41. K. Y. Chan, J. Ding, J. W. Ren, S. A. Cheng and K. Y. Tsang, Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, Journal of Materials Chemistry, 2004, 14, 505-516.
    42. S.-H. Liu, S.-C. Chen and W.-H. Sie, Heat-treated platinum nanoparticles embedded in nitrogen-doped ordered mesoporous carbons: Synthesis, characterization and their electrocatalytic properties toward methanol-tolerant oxygen reduction, International Journal of Hydrogen Energy, 2011, 36, 15060-15067.
    43. F. Harris, Carbon nanotubes and other graphitic structures as contaminants on evaporated carbon film, Journal of Microscopy, 1997, 186, 88-90.
    44. H. Dong and L. Dong, Electrocatalytic Activity of Carbon Nanotube-Supported Pt–Cr–Co Tri-Metallic Nanoparticles for Methanol and Ethanol Oxidations, Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 754-757.
    45. W. Zhang and S. R. Silva, APPLICATION OF CARBON NANOTUBES IN POLYMER ELECTROLYTE BASED FUEL CELLS, Rev. Adv. Mater. Sci., 2011, 29, 1-14.
    46. A. Guha, W. Lu, T. A. Zawodzinski and D. A. Schiraldi, Surface-modified carbons as platinum catalyst support for PEM fuel cells, Carbon, 2007, 45, 1506-1517.
    47. S. Murugesan, K. Myers and V. Subramanian, Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid, Applied Catalysis B: Environmental, 2011, 103, 266-274.
    48. M. E. Achaby, E. M.Essassi and A. Qaiss, Coated multi-walled carbon nanotubes for the preparation of nanocomposite films., Society of Plastics Engineerings, 2012.
    49. D. Long, W. Li, W. Qiao, J. Miyawaki, S. Yoon, I. Mochidab and L. Ling, Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells, Chem Commun (Camb), 2011, 47, 9429-9431.
    50. Y. Li, W. Zhou, S. J. Pennycook, H. Wang, L. Xie, Y. Liang, F. Wei and J. C. Idrobo, An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes, Nature nanotechnology, 2012, 7, 394-400.
    51. X. Li, S.-H. Yoon, K. Du, Y. Zhang, J. Huang and F. Kang, An urchin-like graphite-based anode material for lithium ion batteries, Electrochimica Acta, 2010, 55, 5519-5522.
    52. P. L. Kuo, C. H. Hsu, W. T. Li, J. Y. Jhan and W. F. Chen, Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells, J. Power Sources, 2010, 195, 7983-7990.
    53. Y. Piao, K. An, J. Kim, T. Yu and T. Hyeon, Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres, Journal of Materials Chemistry, 2006, 16, 2984.
    54. H. Wang, T. Maiyalagan and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications, ACS Catalysis, 2012, 2, 781-794.
    55. L. Dong, S. Gari, Z. Li , M. M. Craig and S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon, 2010, 48, 781-787.
    56. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 2009, 81, 109-162.
    57. T. Ndlovu, O. A. Arotiba, S. Sampath, R. W. Krause and B. B. Mamba, Reactivities of Modified and Unmodified Exfoliated Graphite., International Journal of ELECTROCHEMICAL SCIENCE, 2012, 7, 9441-9453.
    58. K. S.Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
    59. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 2009, 324, 1312-1314.
    60. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. d. Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science, 2006, 312, 1191-1196.
    61. 蘇清源, 石墨烯氧化物之特性與應用前景, PHYSICS BIMONTHLY, 2011, 163-167.
    62. M. Acik and Y. J. Chabal, A Review on Reducing Graphene Oxide for Band Gap Engineering, Journal of Materials Science Research, 2012, 2, 101-112.
    63. H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. Y. Choi and Y. H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Advanced Functional Materials, 2009, 19, 1987-1992.
    64. S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon, 2012, 50, 3210-3228.
    65. P. Kim, J. B. Joo, W. Kim, J. Kim, I. K. Song and J. Yi, NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation, J. Power Sources, 2006, 160, 987-990.
    66. Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu and H. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor, Electrochimica Acta, 2013, 88, 519-525.
    67. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali and R. S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon, 2011, 49, 3019-3023.
    68. X. Gao, J. Jang and S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, J. Phys. Chem., 2010, 114, 832-842.
    69. H. Raghubanshi, S. L. Hudson and O. N. Srivastava, Effect of Ambient Gas Pressure on the Thermal Exfoliation of Graphite Oxide: Tuning the Number of Graphene Sheets, 2013.
    70. C. Y. Su, Y. P. Xu, W. J. Zhang, J. W. Zhao, A. P. Liu, X. H. Tang, C. H. Tsai, Y. Z. Huang and L. J. Li, Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors, J. ACS. NANO, 2010, 4, 5289-5292.
    71. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruof, The chemistry of graphene oxide, Chemical Society reviews, 2010, 39, 228-240.
    72. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud’homme and I. A. Aksay, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, J. Chem. Mater, 2007, 19, 4396-4404.
    73. J. Cao, W. Yang, G. Q. Qi, B. H. Xie, K. Ke, Y. Luo and M. B. Yang, Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction, Journal of Materials Science, 2012, 47, 5097-5105.
    74. M. J. Hudson, J. W. Peckett, C. S. Sibley and P. J. F. Harris, Pyrolysis of Polymer-Derived Carbons in the Formation of Graphitizing Carbons and Nanoparticles of Zirconia, Ind. Eng. Chem. Res., 2008, 47, 2605-2611.
    75. X. Chen, D. He and S. Mu, 掺氮石墨烯研究, 化學進展, 2013, 25, 1292-1301.
    76. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang and J. M. Tour, Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets, J. AM. CHEM. SOC., 2008, 130, 16201-16206.
    77. K. Singh, A. Ohlan and S. K. Dhaw, Polymer-Graphene Nanocomposites: Preparation, Characterization, Properties, and Applications, 2012.
    78. A. S. Wajid, S. Das, F. Irin, A. H. S. T, J. L. Shelburne., D. Parviz, J. F. R, A. F. Jankowski, R. R. C. and M. J. Green, Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon, 2012, 50, 526-534.
    79. C. Song, D. Wu, F. Zhang, P. Liu, Q. Lu and X. Feng, Gemini Surfactant Assisted Synthesis of Two-Dimensional Metal Nanoparticle/Graphene Composites, The Royal Society of Chemistry, 2012.
    80. S. Vadukumpully, J. Paul and S. Valiyaveettil, Cationic surfactant mediated exfoliation of graphite into graphene flakes, Carbon, 2009, 47, 3288-3294.
    81. P. Diwan, S. Harms, K. Raetzke and A. Chandra, Polymer electrolyte-graphene composites: Conductivity peaks and reasons thereof, Solid State Ionics, 2012, 217, 13-18.
    82. C. Janiak, A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands †, Journal of the Chemical Society, Dalton Transactions, 2000, 3885-3896.
    83. S. Mayavan, H. S. Jang, M. J. Lee, S. H. Choi and S. M. Choi, Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation, Journal of Materials Chemistry A, 2013, 1, 3489.
    84. S. Wang, D. Yu, L. Dai, D. W. Chang and J. B. Baek, Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction, J. ACS. NANO, 2011, 5, 6202-6209.
    85. A. B. Bourlinosa, V. Georgakilasa, R. Zboril, T. A. Steriotis, A. K. Stubosd and C. Trapalis, Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes, Solid State Communications, 2009, 149, 2172-2176.
    86. J. Wang, Z. T, H. Deng, F. Chen, K. Wang, Q. Zhang and Q. Fu, An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility, Colloids and surfaces. B, Biointerfaces, 2013, 101, 171-176.
    87. G. Guo, J. Guo, D.Tao, W. C. H. Choy, L. Zhao, W. Qian and Z.Wang, A Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites, Applied Physics A, 2007, 89, 525-528.
    88. W. Wang, Q. Chenn, C. Jiang, D. Yang, X. Liu and S. Xu, One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone), Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 73-79.
    89. R. Imran Jafri, N. Rajalakshmi and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, Journal of Materials Chemistry, 2010, 20, 7114.
    90. R. I. Jafri, N. Rajalakshmib and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, Journal of Materials Chemistry, 2010, 20, 7114.
    91. Y.Okamoto, First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon, Applied Surface Science, 2009, 256, 335-341.
    92. K. N. Wood, R. O'Hayre and S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy & Environmental Science, 2014, 7, 1212.
    93. R. S. Hsu, Nanostructured Non-Precious Metal Catalysts for Polymer Electrolyte Fuel Cell, 2010.
    94. H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong and B. Zhang, High performance Fe- and N- doped carbon catalyst with graphene structure for oxygen reduction, Scientific reports, 2013, 3, 1765.
    95. A. M. Ferraria, XPS studies of directly fluorinated HDPE: problems and solutions, Polymer, 2003, 44, 7241-7249.
    96. L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Linc and R. S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 2012, 5, 7936.
    97. W. Y. Wong, W.R.W.Daud, A. B. Mohamad, A. A. H. Kadhum, K. S. Loh and E. H. Majlan, Electrocatalytic Oxygen Reduction Analysis on N-CNTs Catalyst from Various Nitrogen Precursor as Potential Candidate for PEMFC, 19th WORLD HYDROGEN ENERGY CONFERENCE, 2012.
    98. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Advances, 2012, 2, 4498.
    99. E. J. Biddinger and D. Deak, Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts, Topics in Catalysis, 2009, 52, 1566-1574.
    100. S. Q. Ci, Y. M. Wu, J. P. Zou, L. H. Tang, S. L. Luo, J. H. Li and Z. H. Wen, Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction, Chinese Science Bulletin, 2012, 57, 3065-3070.
    101. Y. Sun, C. Li and G. Shi, Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction, Journal of Materials Chemistry, 2012, 22, 12810.
    102. G. Wu, R. Swaidan, D. Li and N. Li, Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon, Electrochimica Acta, 2008, 53, 7622-7629.
    103. Z. Lin, G. H., Y. Liu, M. Liu and C. P. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction, Nano Energy, 2013, 2, 241-248.
    104. S. Qin, D. Qin, W. T. Ford, J. E. Herrera and D. E. Resasco, Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films, Macromolecules, 2004.
    105. M. Muraoka, H. Tomonaga and M. Nagai, Ammonia-treated brown coal and its activity for oxygen reduction reaction in polymer electrolyte fuel cell, Fuel, 2012, 97, 211-218.
    106. H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield and J. P. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability, Electrochimica Acta, 2010, 55, 6450-6461.
    107. Q. Liang, L. Yong, J. B. Baek and D. Liming, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, J. ACS. NANO, 2010, 4, 1321-1326.
    108. J. Long, X. Xie, J. Xu, Q. Gu, L. Chen and X. Wang, Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols, ACS Catalysis, 2012, 2, 622-631.
    109. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties, NANO LETTER, 2009, 9, 1752-1758.
    110. D. S. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Yeb and S. Knights, High oxygen-reduction activity and durability of nitrogen-doped graphene, Energy & Environmental Science, 2010, 4, 760.
    111. Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, S. Zhang, M. H. Engelhard, H. Mark, G. Li, G. Shao, Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, J. Liu, I. A. Aksay. and Y. Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry, 2010, 20, 7491.
    112. Y. Wang, Y. Shao, D. W. Matson, J. Li and Y. Lin, Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing, J. ACS. NANO, 2010, 4, 1790-1798.
    113. H. Jeong, J. Lee, W. Shin, Y. J. Choi, H. J. Shin, J. K. Kang and J. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano letters, 2011, 11, 2472-2477.
    114. Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry, 2010, 20, 7491.
    115. X. Yuxi, B. Hua, L. Gewu, L. Chun and S. Gaoquan, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, Journal of the American Chemical Society, 2008, 130, 5856-5857.
    116. 李美嬅, 核殼式鈷白金/碳觸媒之製備及其氧氣還原反應特性探討, 私立東海大學化學工程學系與材料工程研究所博士論文, 2009.
    117. 陸瑞東, 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究, 國立成功大學化學工程學系碩士論文, 2012.
    118. A. M. M. Xiaojun Dang, and Joseph T. Hupp, Electrochemically Modulated Diffraction A Novel Strategy for the Determination of Conduction-Band-Edge Energies for Nanocrystalline Thin-Film Semiconductor Electrodes, Electrochemical and Solid-State Letters, 2000, 3, 555-558.
    119. Y. Takasu, N. Yoshinaga and W. Sugimoto, Oxygen reduction behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti binary oxide electrodes in a sulfuric acid solution, Electrochemistry Communications, 2008, 10, 668-672.
    120. 陸瑞東, 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究, 國立成功大學化學工程學系博士論文, 2012.
    121. 薛志鴻, 質子交換膜型燃料電池電極在CO存在下之阻抗分析, 國立成功大學化學工程學系碩士論文, 2005.
    122. X. Z. Tang, X. Li, Z. Cao, J. Yang, H. Wang, X. Pu and Z. Z. Yu, Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose, Carbon, 2013, 59, 93-99.
    123. Z. Lei, M. Zhao, L. Dang, L. An, M. Lu, A. Y. Lo, N. Yu and S. B. Liu, Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres, Journal of Materials Chemistry, 2009, 19, 5985.
    124. D. Caia, S. Wanga, P.Lianb, X. Zhuc, D. Lia, W. Yang and H. Wang, Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries, Electrochimica Acta, 2013, 90, 492-497.
    125. R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. C. Charlier, M. Pan and M. Terrones, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing, Scientific reports, 2012, 2, 586.
    126. D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida and S. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide, Langmuir : the ACS journal of surfaces and colloids, 2010, 26, 16096-16102.
    127. Y. Zhang, W. Hu, B. Li, C. Peng, C. Fan and Q. Huang, Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process, Nanotechnology, 2011, 22, 345601.
    128. D. F. Han, C. S. Shan, L. P. Guo, L. Niu and D. X. Han, Electro-oxidation of Ascorbic Acid on PVP-stabilized Graphene Electrode, CHEM. RES. CHINESE UNIVERSITIES, 2010, 26, 287-290.
    129. X. Y. Li, Y. C. Li, D. G. Yu, Y. Z. Liao and X. Wang, Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning, International journal of molecular sciences, 2013, 14, 21647-21659.
    130. X.-Y. Li, X. Wang, D.-G. Yu, S. Ye, Q.-K. Kuang, Q.-W. Yi and X.-Z. Yao, Electrospun Borneol-PVP Nanocomposites, Journal of Nanomaterials, 2012, 2012, 1-8.
    131. D. G. Yu, J. H. Yang, X. Wang and F. Tian, Liposomes self-assembled from electrosprayed composite microparticles, Nanotechnology, 2012, 23, 105606.
    132. I. C. LEWI, Chemistry of carbonization, Carbon, 1982, 20, 519-529.
    133. G. Keru, P. G. Ndungu and V. O.Nyamori, Nitrogen-Doped Carbon Nanotubes Synthesised by Pyrolysis of (4-{[(pyridine-4-yl)methylidene]amino}phenyl)ferrocene, Journal of Nanomaterials, 2013, 2013, 1-7.
    134. Y. Zhou, T. Holme, J. Berry, T. R. Ohno, D. Ginley and R. O'Hare, Dopant-Induced Electronic Structure Modification of HOPG Surfaces Implications for High Activity Fuel Cell Catalysts.
    135. G. Liu, X. Li, P. Ganesan and B. N. Popov, Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells, Electrochimica Acta, 2010, 55, 2853-2858.
    136. I. A. Pasti, N. M. Gavrilov and S. V. Mentus, Potentiodynamic Investigation of Oxygen Reduction Reaction on Polycrystalline Platinum Surface in Acidic Solutions: the Effect of the Polarization Rate on the Kinetic Parameters, Int. J. Electrochem. Sci., 2012, 7, 11076-11090.
    137. Y. Zhou, T. Holme, J. Berry, T. R. Ohno, D. Ginley and R. O'Hayer, Dopant-Induced Electronic Structure Modification of HOPG Surfaces: Implications for High Activity Fuel Cell Catalysts, J. Phys. Chem., 2010, 114, 506-515.
    138. 郭信霖, 統計學概論, 華立圖書股份有限公司, 2006, 260.
    139. R. I. Jafri, T. Arockiados, N. Rajalakshmi and S. Ramaprabhu, Nanostructured Pt Dispersed on Graphene-Multiwalled Carbon Nanotube Hybrid Nanomaterials as Electrocatalyst for PEMFC, Journal of The Electrochemical Society, 2010, 157, B874.

    下載圖示 校內:2019-07-28公開
    校外:2019-07-28公開
    QR CODE