簡易檢索 / 詳目顯示

研究生: 王致堯
Wang, Chih-Yao
論文名稱: BIM-CATT:適用於建築設計初期的全生命週期減碳評估工具
BIM-CATT: A LCA Tool for Early Design Process
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: BIMLEBRBERS可視化設計初期
外文關鍵詞: BIM, LEBR, BERS, Visualization, Early design process
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化日漸加劇,國際能源總署(IEA)於2021年發布「2050年淨零路徑」,以控制溫室氣體排放。我國國家發展委員會亦提出「臺灣2050淨零排放路徑」,期望以2030年、2050年為基準,在各產業達到近零碳排放。其中建築部門提出BERS(建築能效評估系統)以控制建築日常使用耗能及碳排放、LEBR(低蘊含碳建築評估系統)以輔助建築業者於設計階段評估蘊含碳排。而隨著BIM(建築資訊模型)之興起,BIM-LCA之開發不僅能更有效率地協助建築師做低碳認證,更能推動產業轉型以加速淨零碳路徑之發展。
    隨著BIM-LCA的發展,既有研究指出,BOQ(工程量清單)與可視化編程之應用可分別效率地評估構件材料與建築量體之碳排,從而達到精準、快速的設計階段評估。然而現有減碳評估工具的應用範圍多以使用碳排為主,近年來開始陸續出現了涵蓋蘊含碳排的全生命週期評估,但許多能效評估系統仰賴設備與材料熱性能的BIM資訊,需配合較高LOD等級(BIM細節度,由LOD100~500表示)之BIM模型計算,這仰賴基本設計階段以後之資訊,耽誤了蘊含碳排減碳潛力之黃金時期。
    本研究目的旨在開發一套可於設計初期操作的減碳評估工具,並能因應LOD以設計導向進行蘊含碳與耗能的整合計算,達到實務設計中輔助減碳設計決策的效果。本研究開發之BIM-CATT(Bim-based Carbon Analysis Tool in Taiwan)參考LEBR評估蘊含碳,運用API連接碳排資料庫、專案參數賦予材料碳排資訊,最後用Dynamo(可視化編程)得出評估與分級。若模型處於設計初期的量體階段,系統會參照容積、建築用途,以設計導向自動得出工程的預測數量,並套用基準碳排參數,以得到現階段減碳評估之回饋;能效計算則是參考BERS,在BIM中以平面空間劃分耗能分區計算,並能透過材料資產的熱性能參數設定,自動化評估外殼節能效率,達到設計階段的耗能評估。最後搭配LEBR得出全生命週期評估結果,並以可視化圖表方式呈現。
    本研究透過BIM-CATT評估實際案例模型,分別以LOD300基本設計階段驗證實際施工狀況之建模、以LOD100概念設計階段操作設計初期的碳排預測計算、以LOD500細部設計階段演示BERS配合LEBR設計階段的計算方式。結果顯示了BIM計算的準確度、以及設計初期運用BIM-CATT輔助減碳決策推進的效果、耗能評估配合蘊含碳評估於BIM設計階段計算的設置方式。

    As global warming escalates, the IEA introduced the "Net Zero by 2050 Pathway" in 2021 to curb greenhouse gas emissions. Taiwan's National Development Council proposed the "Taiwan 2050 Net Zero Emission Pathway" to achieve near-zero carbon emissions across industries by 2030 and 2050. In the building sector, BERS and LEBR have been announced to control OC(operation carbon) and EC(embodied carbon). With the rising of BIM(Building Information Model), current studies show that BIM-LCA can facilitate efficient low-carbon certification in several design processes. However, existing tools primarily focus on OC analysis in detailed design, delaying EC reducing potential.
    This study aims to develop BIM-CATT(Bim-based Carbon Analysis Tool in Taiwan), integrating EC and OC in early design stages and carring out LCA in different LODs. BIM-CATT references LEBR for EC, utilizes API for carbon fators database and Dynamo for assessments, while the OE(operation energy) thus OC is based on BERS. With the user interface for EUI and envelope thermal parameters, BIM-CATT automatically resulting LCA reports in early design process.
    The features of BIM-CATT are conducted by the following case studies: The verification of calculation accuracy based on real construction works is shown in a LOD300 model, which is in the schematic design phase; The assessment of the LOD100 model, which is in conceptual design phase, shows the possibility of reducing EC in early stages; The LCA of the LOD500 model, which is in detail design phase, demonstrates different workflows in design process, which contain both LEBR and BERS. The above results show BIM-CATT's accuracy and effectiveness by ongoing cases, which is a crucial part for architecture industries in this Net-Zero future.

    第一章 緒論 1 1-1研究背景與動機 1 (1) 淨零建築的全球趨勢 1 (2) 台灣的淨零政策 3 (3) 適用於台灣設計初期的評估工具 4 (4) BIM-LCA的突破可能 5 1-2研究目的 6 (1) 建置可用於設計初期的減碳評估工具 6 (2) 提高EC與OC整合評估的可能性 6 (3) 探討實務設計之減碳應用 6 1-3研究範圍與流程 7 (1) 研究範圍 7 (2) 研究流程 7 第二章 文獻回顧與相關理論 9 2-1生命週期評估的定義與方法 9 (1) 基於ISO14040框架下的評估 9 (2) 建築生命週期階段評估邊境 9 (3) 碳排計算方法 11 (4) 減碳設計 13 2-2LCA評估工具的發展 16 (1) 各類型碳排計算工具介紹 16 (2) BIM-LCA之技術與應用 20 (3) 運用BIM-LCA評估建築能效 23 (4) 設計初期的碳排評估 25 第三章 研究方法 27 3-1蘊含碳排的計算 27 (1) 主結構碳排的計算法 27 (2) 非主結構資材碳排的計算法 30 (3) LEBR等級的評估法 30 3-2使用耗能與碳排的計算 32 (1) EEV、EAC、EL的計算 32 (2) 耗能分區劃分 34 (3) BERS等級的評估法 34 3-3BIM-CATT之開發與設計 36 (1) 運用於設計階段 36 (2) LOD等級 36 (3) 系統架構 38 (4) Revit樣版的運用 39 (5) 程式計算的運用 40 第四章 BIM-CATT評估工具 41 4-1 低碳評估介面與功能 41 (1) 工址與地震力參數設定 41 (2) 形狀係數與跨距係數分析 42 (3) 材料與構造減碳參數介面 44 (4) B-LCC資料庫之連結 45 (5) 建築構件之創建與使用 45 (6) 蘊含碳BOQ清單 46 4-2 耗能評估介面與功能 47 (1) 材料之熱性能參數設定 47 (2) 空調外周區識別計算 50 (3) ENVLOAD分析 51 (4) 各項系統節能效率參數設定 52 (5) 耗能分區分析 53 (6) BERS耗能分區2000年EUI基準數據之連結 54 4-3 全生命週期評估介面 55 (1) 運用可視化編程評估LCA 55 (2) 設計初期評估 57 第五章 案例應用結果 59 5-1 基本設計階段 59 (1) 基本資訊 59 (2) 評估流程 60 (3) 精準化評估結果 61 5-2 概念設計階段 65 (1) 基本資訊 65 (2) 評估流程 65 (3) 設計初期蘊含碳評估 67 (4) 減碳設計潛力 69 (5) 減碳決策推進 70 5-3 細部設計階段 72 (1) 基本資訊 72 (2) 評估流程 72 (3) 全生命週期評估結果 74 (4) EEV計算 79 (5) 空調外周區計算 80 (6) 外殼碳排與熱性能計算 81 第六章 結論與建議 83 6-1結論 83 (1) 適用台灣低碳評估制度的BIM-LCA 83 (2) 可運用於設計初期 83 (3) 輔助減碳設計決策 83 6-2後續建議 84 (1) 提高評估工具與BIM模型的互動程度 84 (2) 降低設計初期碳排預測計算之不確定性 84 (3) 依照評估目的進行工具開發 84 參考文獻 85

    (一) 中文文獻
    1. 內政部建築研究所. (2022). 綠建築評估手冊-建築能效評估系統
    2. 內政部建築研究所. (2023). 低碳(低蘊含碳)建築評估手冊
    3. 內政部建築研究所. (2023). 綠建築評估手冊-基本型2023年版
    4. 低碳建築聯盟. (2020). https://www.lcba.org.tw/
    5. 呂啟銘. (2015). 應用於BIM於建築設計階段之碳足跡模擬計算工具. 國立成功大學碩士論文
    6. 杜怡萱, 李雅琪, 黃誠中. (2016). RC建築結構體建材用量與碳排放量之影響因子研究. 建築學報, 第95期. 59-73頁
    7. 林憲德, 杜怡萱, 楊詩弘. (2022). 建材碳足跡指標導入綠建築評估系統之研究. 內政部建築研究所委託研究計畫
    8. 建築物節約能源設計與技術規範. (2024)
    9. 張又升. (2002). 建築物生命週期二氧化碳減量評估. 國立成功大學博士論文
    10. 國家發展委員會. (2022). 臺灣 2050 淨零排放路徑及策略總說明
    11. 黃紹筑. (2016). 整合BIM工具的感應式節能立面設計流程. 國立成功大學碩士論文
    12. 黃誠中. (2016). RC中層集合住宅結構體建材用量與碳排放量影響因子研. 國立成功大學碩士論文
    13. 楊忠翰. (2022). 建築設計變因對中高層RC建築結構體建材用量與碳排放量之影響. 國立成功大學碩士論文
    14. 鄭卉妤. (2022). 建築設計初期階段碳足跡評估工具之開發. 國立成功大學碩士論文
    (二) 英文文獻
    1. Anand, C. K., & Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and sustainable energy reviews, 67, 408-416.
    2. AIA. (2021). AIA-CLF Embodied Carbon Toolkit for Architects–Part 1: Introduction to embodied carbon. Retrieved Sep 28, 2023 from https://www.aia.org/resources/6445061-aia-clf-embodied-carbon-toolkit-for-archit.
    3. AIA. (2021). AIA-CLF Embodied Carbon Toolkit for Architects–Part 2: Measureing embodied carbon. Retrieved Sep 28, 2023 from https://www.aia.org/resources/6445061-aia-clf-embodied-carbon-toolkit-for-archit.
    4. AIA. (2021). AIA-CLF Embodied Carbon Toolkit for Architects–Part 3: Strategies for reducing embodied carbon. Retrieved Sep 28, 2023 from https://www.aia.org/resources/6445061-aia-clf-embodied-carbon-toolkit-for-archit.
    5. Abbasi, S., & Noorzai, E. (2021). The BIM-Based multi-optimization approach in order to determine the trade-off between embodied and operation energy focused on renewable energy use. Journal of Cleaner Production, 281, 125359.
    6. Alwan, Z., & Jones, B. I. (2022). IFC-based embodied carbon benchmarking for early design analysis. Automation in construction, 142, 104505.
    7. Autodesk. (2024). Tally. Retrieved May 15, 2024 from https://apps.autodesk.com/RVT/en/Detail/Index?id=3841858388457011756&appLang=en&os=Win64
    8. BIM Forum. (2023). Level of Development (LOD) Specification. Retrieved Sep 28, 2023 from https://bimforum.org/resource/lod-level-of-development-lod-specification/
    9. Carbon Leadership Forum. (2023). Embodied Carbon in Construction Calculator (EC3). Retrieved Sep 28, 2023 from https://carbonleadershipforum.org/ec3-tool/
    10. Crawford, R. H., Stephan, A., & Schmidt, M. (2018). Embodied carbon in buildings: An Australian perspective. In Pomponi, F., De Wolf, C., & Moncaster, A. (eds.), Embodied carbon in buildings. Springer, Cham. https://doi.org/10.1007/978-3-319-72796-7_11
    11. EN15804(2012). Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction product.
    12. EN15978(2011). Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method.
    13. EN15203(2005). Energy performance of buildings - Assessment of energy use and definition of ratings.
    14. Guignone, G., Calmon, J. L., Vieira, D., & Bravo, A. (2023). BIM and LCA integration methodologies: A critical analysis and proposed guidelines. Journal of Building Engineering, 73, 106780.
    15. IEA. (2021). Net Zero by 2050. Retrieved Sep 28, 2023 from https://www.iea.org/reports/net-zero-by-2050
    16. IEA. (2023). Tracking Clean Energy Progress.
    17. InterNACHI. (2024). InterNACHI's Standard Estimated Life Expectancy Chart for Homes.
    18. ISO14040(2006). Environmental management — Life cycle assessment — Principles and framework.
    19. ISO14067(2018). Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification.
    20. ISO16346(2013). Energy performance of buildings — Assessment of overall energy performance.
    21. ISO19650-1(2018). Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) — Information management using building information modelling.
    22. ISO21930(2017). Sustainability in buildings and civil engineering works — Core rules for environmental product declarations of construction products and services.
    23. ISO21931-1(2022). Sustainability in buildings and civil engineering works — Framework for methods of assessment of the environmental, social and economic performance of construction works as a basis for sustainability assessment.
    24. Lu, M., Luo, Z., Cang, Y., Zhang, N., & Yang, L. (2024). Methods for Calculating Building-Embodied Carbon Emissions for the Whole Design Process. Fundamental Research.
    25. One Click LCA. (2024). BREEAM International. Retrieved May 15, 2024 from https://oneclicklca.com/certifications/breeam-international
    26. Pasanen, P., & Castro, R. (2018, November 30). One Click LCA – LCA made easy. Carbon Network, 2018 Webinar Series.
    27. Paulson Jr, B. C. (1976). Designing to reduce construction costs. Journal of the construction division, 102(4), 587-592.
    28. RICS. (2012). Methodology to calculate embodied carbon of materials, information paper, UK.
    29. Rezaei, F., Bulle, C., & Lesage, P. (2019). Integrating building information modeling and life cycle assessment in the early and detailed building design stages. Building and Environment, 153, 158-167.
    30. Röck, M., Hollberg, A., Habert, G., & Passer, A. (2018). LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Building and environment, 140, 153-161.
    31. Shibata, N., Sierra, F., & Hagras, A. (2023). Integration of LCA and LCCA through BIM for optimized decision-making when switching from gas to electricity services in dwellings. Energy and Buildings, 288, 113000.
    32. Tam, V. W., Zhou, Y., Shen, L., & Le, K. N. (2023). Optimal BIM and LCA integration approach for embodied environmental impact assessment. Journal of Cleaner Production, 385, 135605.
    33. Tang, C., Tsay, Y.S. (2018). Simplified Surface Area Calculation for Green Building Material Regulations in Taiwan’s Building Code. 2018 ILCGBS, Taipei (Taiwan), Oct. 14-17, 2018.
    34. Thorntontomasetti. (2022). Beacon. Retrieved Sep 28, 2023 from https://www.thorntontomasetti.com/capability/beacon
    35. Tsay, Y. S., Yeh, C. Y., Chen, Y. H., Lu, M. C., & Lin, Y. C. (2021). A machine learning-based prediction model of lcco2 for building envelope renovation in taiwan. Sustainability, 13(15), 8209.
    36. Tsay, Y. S., Yeh, Y. C., & Jheng, H. Y. (2023). Study of the tools used for early-stage carbon footprint in building design. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 4, 100128.
    37. Tushar, Q., Bhuiyan, M. A., Zhang, G., & Maqsood, T. (2021). An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development. Journal of Cleaner Production, 289, 125622.
    38. UK Green Building Council. (2017). Embodied Carbon: Developing a Client Brief.
    39. UNEP. (2021). Global Status Report for Buildings and Construction. Retrieved May 15, 2023 from https://www.unep.org/resources/report/global-status-report-buildings-and-construction
    40. Wastiels, L., & Decuypere, R. (2019, August). Identification and comparison of LCA-BIM integration strategies. In IOP conference series: earth and environmental science (Vol. 323, No. 1, p. 012101). IOP Publishing.
    41. WGBC. (2019). Bringing embodied carbon upfront. Retrieved Sep 28, 2023 from https://worldgbc.org/article/bringing-embodied-carbon-upfront/
    42. De Wolf, C., Simonen, K., & Ochsendorf, J. (2018). Initiatives to report and reduce embodied carbon in north American buildings. Embodied Carbon in Buildings: Measurement, Management, and Mitigation, 463-482.
    43. Yan, S., Zhang, Y., Sun, H., & Wang, A. (2023). A real-time operational carbon emission prediction method for the early design stage of residential units based on a convolutional neural network: A case study in Beijing, China. Journal of Building Engineering, 75, 106994.
    44. Zaraza, J., McCabe, B., Duhamel, M., & Posen, D. (2022). Generative design to reduce embodied GHG emissions of high-rise buildings. Automation in construction, 139, 104274.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE