| 研究生: |
楊健廷 Yang, Chien-Ting |
|---|---|
| 論文名稱: |
考量棲地品質及人類需求目標於水庫最佳化操作 Considering Habitat Quality and Human Needs in Reservoir Operation Optimization |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 環境流量 、棲地品質 、棲地多樣性指數 、棲地複雜性指數 、水庫操作最佳化 、NSGA-III |
| 外文關鍵詞: | Environmental Flow, Habitat Quality, Habitat Diversity Index, Habitat Complexity Index, Reservoir Operation Optimization |
| 相關次數: | 點閱:152 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水庫長期以來被用來解決水資源不足之問題,包含民生、灌溉、防洪、發電、環境流量的需求,其中環境流量多使用水文歷史數據以統計方式進行估算,但此種最小流量法往往忽略了河流生物的需求。近年來,有許多研究結果表明棲地的複雜性及多樣性被認為是影響溪流魚類群落組成的主要因素,本研究基於提升棲地品質有助於改善河流生態系統之假設,定義兩個生態目標函數分別為棲地品質目標及歷史棲地目標,棲地品質目標由棲地多樣性指數、棲地可用性指數及棲地複雜性指數所決定;歷史棲地目標則假設過去魚類群落組成所需的棲地類型比例較為接近自然河川之狀態,利用魚類群落結合個體生態矩陣推估過去棲地類型比例。
本研究以曾文水庫下游油車溪匯流口至後旦溪匯流口為研究區域,目標函數包含人類缺水目標、棲地品質目標及歷史棲地目標,依照考量不同的棲地目標設立四種最佳化情境,情境一及情境二以權重整合目標函數為單目標情境,情境三及情境四則是考量情境一及情境二的雙目標情境。利用遺傳演算法及NSGA-III進行單目標及雙目標搜尋,最佳化曾文水庫操作規線以達到兼顧生態需求及人類需求之目的,並比較現行水庫模式及最佳化模式於不同水文情境中的差異。研究結果顯示單目標情境中在整體目標值以最佳化操作模式表現較好,在人類缺水目標以現行水庫模式表現較佳,在棲地品質目標及歷史棲地目標以最佳化操作模式表現較佳,表示最佳化模式操作多釋放之環境流量有助於提升研究區域之棲地品質。雙目標情境中比較柏拉圖前緣上各最佳解所對應的缺水量差別,可提供水資源管理者衡量在不同情境下之水庫放流策略。
Reservoirs have been used to solve the insufficient water resource for a long time, including irrigation, flood control, power generation, and environmental flow needs. The environmental flow needs are mostly estimated using historical hydrological data, but this minimum flow method often ignores the needs of river organisms. Many studies have shown that habitat diversity and complexity are considered to be the main factors affecting fish assemblages. Based on the assumption that increasing habitat diversity will improve the instream biodiversity, this study proposes two ecological objectives: habitat quality objective and historical habitat objective. Habitat quality objective is determined by habitat diversity, potentially usable area, and habitat complexity. Historical habitat objective regards the habitat types required by the past fish assemblage as being close to the natural flow regime and uses the fish autecology matrix to estimate historical habitat composition. This study takes the 5-km river section downstream of Zengwen Reservoir as the study area. The objective function includes human needs objective, habitat quality objective, and historical habitat objective. HEC-RAS is used to simulate depth and velocity distributions downstream under different discharges. Fuzzy concepts are applied to model habitats such as shallow riffles, deep pools, and other habitat units—which are defined by depth and velocity. The genetic algorithm and NSGA-III are used to search for the optimized operation rule curve of Zengwen Reservoir to take into account both ecological needs and human needs. After obtaining the optimized operation rule curve, comparisons between the current reservoir operation and the optimized operation in different hydrological situations are conducted, which could provide water resource managers with another reservoir release strategy.
Amoros, C. The concept of habitat diversity between and within ecosystems applied to river side-arm restoration. Environmental Management, 28, 805-817. (2001).
Belaineh, G., Peralta, R. C., & Hughes, T. C. Simulation/optimization modeling for water resources management. Journal of Water Resources Planning and Management, 125(3), 154-161. (1999).
Borsányi, P., Alfredsen, K., Harby, A., Ugedal, O., & Kraxner, C. A meso-scale habitat classification method for production modelling of Atlantic salmon in Norway. Hydroécologie appliquée, 14, 119-138. (2004).
Bunn, S. E., & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492-507. (2002).
Chang, F.-J., & Chen, L. Real-coded genetic algorithm for rule-based flood control reservoir management. Water Resources Management, 12, 185-198. (1998).
Chang, F. J., Chen, L., & Chang, L. C. Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes, 19(11), 2277-2289. (2005).
Chang, L. C., & Chang, F. J. Intelligent control for modelling of real‐time reservoir operation. Hydrological Processes, 15(9), 1621-1634. (2001).
Chen, H.-W., & Chang, N.-B. Using fuzzy operators to address the complexity in decision making of water resources redistribution in two neighboring river basins. Advances in Water Resources, 33(6), 652-666. (2010).
Chen, H., Ahmadianfar, I., Liang, G., Bakhsizadeh, H., Azad, B., & Chu, X. A successful candidate strategy with Runge-Kutta optimization for multi-hydropower reservoir optimization. Expert Systems with Applications, 209, 118383. (2022).
Chow, V. T. Open-channel Hydraulics. New York: McGram-Hill Book Company: Inc. (1959).
Chuntian, C. Fuzzy optimal model for the flood control system of the upper and middle reaches of the Yangtze River. Hydrological Sciences Journal, 44(4), 573-582. (1999).
Deb, K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311-338. (2000).
Deb, K., & Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. (2013).
Fan, C., Ko, C.-H., & Wang, W.-S. An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation. Journal of Environmental Management, 90(5), 1824-1832. (2009).
Gorman, O. T., & Karr, J. R. Habitat structure and stream fish communities. Ecology, 59(3), 507-515. (1978).
Gostner, W., Alp, M., Schleiss, A. J., & Robinson, C. T. The hydro-morphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects. Hydrobiologia, 712, 43-60. (2013a).
Gostner, W., Annable, W., Schleiss, A., & Paternolli, M. A case-study evaluating river rehabilitation alternatives and habitat heterogeneity using the hydromorphological index of diversity. Journal of Ecohydraulics, 6(1), 1-16. (2021).
Gostner, W., Parasiewicz, P., & Schleiss, A. A case study on spatial and temporal hydraulic variability in an alpine gravel‐bed stream based on the hydromorphological index of diversity. Ecohydrology, 6(4), 652-667. (2013b).
Jowett, I. G. A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research, 27(2), 241-248. (1993).
King, J., & Louw, D. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health & Management, 1(2), 109-124. (1998).
Lai, V., Huang, Y. F., Koo, C. H., Ahmed, A. N., & El-Shafie, A. A review of reservoir operation optimisations: from traditional models to metaheuristic algorithms. Archives of Computational Methods in Engineering, 29(5), 3435-3457. (2022).
Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshwater Biology, 41(2), 373-391. (1999).
McMahon, T. A., Adeloye, A. J., & Zhou, S.-L. Understanding performance measures of reservoirs. Journal of Hydrology, 324(1-4), 359-382. (2006).
Mouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L., & Martínez-Capel, F. Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. (2011).
National Research Council. River science at the US Geological Survey. National Academies Press, (2007).
Olden, J. D., & Poff, N. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19(2), 101-121. (2003).
Orth, D. Food web influences on fish population responses to instream flow. Bulletin Francais de la Peche et de la Pisciculture (France). (1995).
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. The natural flow regime. BioScience, 47(11), 769-784. (1997).
Qicai, L. Influence of dams on river ecosystem and its countermeasures. Journal of Water Resource and Protection. (2011).
Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research & Management, 14(4), 329-340. (1998).
Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10(4), 1163-1174. (1996).
Schlosser, I. J. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs, 52(4), 395-414. (1982).
Schmutz, S., & Moog, O. Dams: ecological impacts and management. Riverine ecosystem management: Science for Governing towards a Sustainable Future, 111-127. (2018).
Srinivas, N., & Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221-248. (1994).
Suen, J.-P. Ecologically based methods for multi-objective water resources management in Taiwan: University of Illinois at Urbana-Champaign. (2005).
Suen, J.-P., Chen, C.-N., & Tsai, C.-H. Creating Diverse Habitat Environment in Ecological Water Resources Management. Paper presented at the World Environmental and Water Resources Congress 2008: Ahupua'A. (2008).
Suen, J.-P., Herricks, E. E., & Eheart, J. W. Ecohydrologic indicators for rivers of northern Taiwan. Critical Transitions in Water and Environmental Resources Management (pp. 1-9). (2004).
Suen, J., & Su, W. Reconstructing riverine mesohabitat unit composition using fish community data and an autecology matrix. Journal of Fish Biology, 77(4), 972-984. (2010).
Suen, J. P., & Eheart, J. W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resources Research, 42(3). (2006).
Tang, Y., Chen, L., & She, Z. Evaluation of instream ecological flow with consideration of ecological responses to hydrological variations in the downstream Hongshui River Basin, China. Ecological Indicators, 130, 108104. (2021).
Tennant, D. L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10. (1976).
Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5‐6), 397-441. (2003).
Tian, Y., Xiang, X., Zhang, X., Cheng, R., & Jin, Y. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems. Paper presented at the 2018 IEEE congress on evolutionary computation (CEC). (2018).
Vogel, R. M., Sieber, J., Archfield, S. A., Smith, M. P., Apse, C. D., & Huber‐Lee, A. Relations among storage, yield, and instream flow. Water Resources Research, 43(5). (2007).
Wang, Y., Liu, P., Dou, M., Li, H., Ming, B., Gong, Y., et al. Reservoir ecological operation considering outflow variations across different time scales. Ecological Indicators, 125, 107582. (2021).
Wyrick, J., & Pasternack, G. Geospatial organization of fluvial landforms in a gravel–cobble river: Beyond the riffle–pool couplet. Geomorphology, 213, 48-65. (2014).
Yeh, W. W. G. Reservoir management and operations models: A state‐of‐the‐art review. Water Resources Research, 21(12), 1797-1818. (1985).
Yi, X. A dam break analysis using HEC-RAS. Journal of Water Resource and Protection, 2011. (2011).
Yi, Y., Cheng, X., Yang, Z., Wieprecht, S., Zhang, S., & Wu, Y. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renewable and Sustainable Energy Reviews, 68, 748-762. (2017).
Zadeh, L. Fuzzy sets. Inform Control, 8, 338-353. (1965).
Zolfagharpour, F., Saghafian, B., & Delavar, M. Adapting reservoir operation rules to hydrological drought state and environmental flow requirements. Journal of Hydrology, 600, 126581. (2021).
汪靜明,大甲溪水資源環境教育,經濟部水資源局,2000。
邵廣昭、高炳華、王慎之,曾文溪環境科學研究計畫,中央研究院動物研究所,1995。
徐享崑,高屏溪水資源規劃缺水指標研究,經濟部水資源統一規劃委員會,1988。
柴家豪,河川棲地多樣性與指標物種棲地面積之相關研究-以烏溪大旗橋河段為例。中華大學土木工程學系碩士論文,新竹市,取自https://hdl.handle.net/11296/t2r54m,2011。
張桓旋,應用個體生態矩陣及類神經網路模擬溪流棲息地之概況。國立成功大學水利及海洋工程學系碩士論文,台南市,取自https://hdl.handle.net/11296/d5ws8k,2014。
陳明仁,水庫洩洪對下游淹水影響之研究─子計畫:水庫洩洪對河系洪流影響計算模式之研發(2/3),2005。
楊意凡,考量排砂與自然流態於水庫最佳化操作。國立成功大學水利及海洋工程學系碩士論文,台南市,取自https://hdl.handle.net/11296/t8wts9,2020。
經濟部,曾文水庫運用要點,2021,取自https://law.moea.gov.tw/LawContent.aspx?id=FL020914&kw=%e6%9b%be%e6%96%87%e6%b0%b4%e5%ba%ab,檢索日期:2023/04/20。
經濟部水利署,台灣地區水資源開發綱領,經濟部水利署,2009。
經濟部水利署,烏山頭水庫,2023,取自https://www.wra.gov.tw/News_Content.aspx?n=3254&s=19384,檢索日期:2023/04/20。
經濟部水利署南區水資源局,曾文水庫基準供水量,經濟部水利署南區水資源局,2023。
經濟部水利署南區水資源局,108-110年曾文水庫放淤監測與下游河道變遷影響分析,經濟部水利署南區水資源局,2021。
經濟部水利署南區水資源局,曾文水庫,2023,取自https://www.wrasb.gov.tw/cp.aspx?n=31313,檢索日期:2023/04/20。
蔡才暘,評估水庫操作最佳化在不同情境下之自然流態變化及經濟成本。國立成功大學水利及海洋工程學系碩士論文,台南市,取自https://hdl.handle.net/11296/r6tgp4,2021。
蔡雨璇,結合乾旱指標之多水庫系統環境流量管理策略。國立成功大學水利及海洋工程學系碩士論文,台南市,取自https://hdl.handle.net/11296/xtrqru,2019。
蕭政宗、吳富春,集集攔河堰最佳引水與河川生態流量之研究,第十四屆水利工程研討會,交通大學,2004。
蕭政宗、吳富春,變異範圍法RVA應用於河川生態流量之規劃,第二屆生態工程學術研討會,台灣大學,2005。
顏沛華、蔡長泰、周乃昉,曾文、烏山頭水庫串聯運用引水量蒸發滲漏輸水損失問題探討改善研究,成大水利海洋研究發展文教基金會,2000。
蘇瑋哲,魚類個體生態矩陣於溪流棲息地模擬之應用,國立成功大學水利及海洋工程學系碩士論文,台南市,取自https://hdl.handle.net/11296/4hp57e,2008。