簡易檢索 / 詳目顯示

研究生: 傅達司
Firdausi, Fanessa
論文名稱: 以CH3NH3PbI3 鈣鈦礦敏化劑和介孔洞銳鈦礦TiO2球珠製備固態太陽能電池
Solid-State Solar Cell-Based on CH3NH3PbI3 Perovskite Sensitizer and Mesoporous Anatase TiO2 Beads
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 88
中文關鍵詞: 固態太陽電池鈣鈦礦敏化劑介孔洞銳鈦礦型二氧化鈦球珠
外文關鍵詞: solid-state solar cell, CH3NH3PbI3 perovskite sensitizer, mesoporous anatase TiO2 beads
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 介孔洞金屬氧化物薄膜已經被應用於固態染料敏化太陽能電池(DSC);然而,納米顆粒薄膜的孔隙內填充困難是一個困擾的議題。近來的研究成果中,二氧化鈦球珠的結構比商用的二氧化鈦納米粒子(P25)有較高的比表面積和更好的電子傳輸已在近年被探討及證實。這些特性使得銳鈦礦型的二氧化鈦球珠增加了表面染料的承載,進而使光吸收率和整體電池的效率提高。研究中,介孔洞銳鈦礦型二氧化鈦球珠配製是以溶膠-凝膠法備製非晶態球珠,之後再以微波水熱法讓球珠中的小顆粒結晶。此外,鈣鈦礦材料(CH3NH3PbI3)是具有「直接能隙」及「高消光係數」,以及寬廣的光吸收範圍,涵蓋於可見光至近紅外光譜之間,這些特性做為敏化劑相當有利。因此,本研究以銳鈦礦型二氧化鈦球珠薄膜做為固態鈣鈦礦敏化太陽電池的電子傳輸層。當然,為了有對照組,亦以商用納米二氧化鈦顆粒(P25)備製相同結構以利比較。之後,以「連續法」或「VASP技術」沉積鈣鈦礦敏化劑在上述的電子輸運層上,並完成固態鈣鈦礦敏化太陽電池的組裝。分別使用X射線繞射和掃描電子顯微鏡等,進行晶體結構和表面形態分析。介孔洞球珠的表面積則是以BET量測。最後對組裝完成的鈣鈦礦太陽電池進行特性量測、評估及探討。

    Mesoporous metal oxide films have been usually adopted for solid-state dye sensitized solar cells (DSC); however, difficulty in pore filling has been an issue in such nanoparticulate films. Beads structure were reported have higher surface area and to be better in electron transport than commercial nanoparticles P25. These characteristics makes anatase TiO2 beads are capable to enhance the dye loading, leading to light absorbance and overall cell efficiency. Mesoporous anatase TiO2 beads were prepared over two steps, including sol-gel and hydrothermal processes. In other hand, the CH3NH3PbI3 perovskite material shows a direct bandgap and wide range of light absorption covering the visible to near-IR spectrum as well as high extinction coefficient, that would be very advantageous as a sensitizer. Here, anatase TiO2 beads were used for the fabrication of solid-state perovskite sensitized solar cell, which then acts as an electron transporting layer. Nanoparticle TiO2 (commercial P25) were also used as a comparison. The perovskite sensitizer then were deposited onto the electron transporting layer, either by sequential or VASP techniques. The crystal structure and the morphology of the resulting beads powders were examined using x-ray diffraction and scanning electron microscope, respectively. The surface area of final beads product were measured using BET analysis. Finally, the device were evaluated using solar cell characterization.

    Contents……………….………………………………………..……………………I List of Tables……………………………………..…………………..…………….V List of Figures……………………………………...……………….....…………...VI 1. Introduction……...………...…………………...……………………….……….1 1.1 Preface……..………………………………………………………...……1 1.2 Objective and Motivation……………….…..………………..……….......3 2. Fundamental Theory and Literature Review…….……………….……………...6 2.1 Solid-State Dye Sensitized Solar Cells (ss-DSC)…..………...…………...6 2.1.1 General Description of ss-DSC………………….…...…...…….6 2.1.2 Materials and Fabrication of ss-DSC……………..…………10 2.2 Perovskite Phenomena….…………………………………..……………12 2.2.1 Perovskite Structure and Synthesis…...…………..……...……12 2.2.2 Properties of CH3NH3PbX3 Halide Perovskite………...………14 2.3 Perovskite-Based Solar Cells (PSCs)………………...…………….……18 2.3.1 Type of Perovskite-Based Solar Cells…...…...……...……...…18 2.3.1.1 Mesoscopic TiO2-Based PSCs………...…………...…19 2.3.1.2 Meso-Superstructure PSCs (MSSC)……...…..............20 2.3.1.3 Planar Heterojunction PSCs……….........……………21 2.3.1.4 Hybrid and Organic Photoboltauc (OPV) PSCs……...22 2.3.2 Mesoscopic TiO2-Based PSCs…………………..……………..22 2.3.2.1 Mechanism of Mesoscopic TiO2-Based PSCs……..…22 2.3.2.2 Progress in Mesoscopic TiO2-Based PSCs………...…26 2.3.3 Preparation of CH3NH3PbI3 Perovskite Materials……………..28 2.4 Anatase Mesoporous TiO2 Beads…………….…...…….……………….30 2.4.1 Characteristic and Application of Anatase Mesoporous TiO2 Beads……………………………………………………..........30 2.4.2 Synthesis of Anatase Mesoporous TiO2 Beads………...………33 3. Experimental Method...………………….……………….…..……….………..36 3.1 Anatase Mesoporous TiO2 Beads Preparation……………………….…..36 3.2 Solid State Solar Cell Fabrication………………...……………..…....…37 3.2.1 Substrate Preparation……...……………………………...........37 3.2.1.1 Etching and Cleaning Processes……….......................37 3.2.1.2 Sputter of TiO2 Compact Layer....................................37 3.2.2 Metal Oxide Layer (Photoanode) Preparation…………………38 3.2.2.1 Paste Preparation………...…………...........................38 3.2.2.2 Paste Deposition…………….......................................38 3.2.3 CH3NH3PbI3 Sensitizer Synthesis and Deposition……...…......39 3.2.3.1 CH3NH3PbI3 Precursor Synthesis…..…………...……39 3.2.3.2 Sequential Deposition Method………..……………...39 3.2.3.3 Vapor Assisted Solution Process (VASP) Method……40 3.2.4 Cell Assembly………………………………………………….40 3.2.4.1 Hole Transport Material (HTM) Deposition………..40 3.2.4.2 Thermal Evaporation of Counter Electrode…………..41 3.3 Characterization Techniques……...……………………………………...41 3.3.1 X-Ray Diffraction (XRD)………………..…….………………41 3.3.2 Scanning Electron Microscopy (SEM).......................................42 3.3.3 Brunauer-Emmett-Teller (BET) Surface Area………................45 3.3.4 Ultraviolet–Visible (UV-Vis) Spectroscopy...............................46 3.3.5 Solar Cell Characterization….....................................................48 4. Result and Discussion……..…..……………………………..….……………...56 4.1 Anatase Mesoporous TiO2 Beads Preparation…………………...............56 4.1.1 XRD Analysis…………..………………..…….………………56 4.1.2 SEM Analysis…………………….............................................58 4.1.3 BET Analysis…………….………………….………................59 4.2 Metal Oxide Layer (Photoanode) Characterization……….……………..60 4.3 Perovskite Precursor Characterization…………………………………61 4.3.1 XRD Analysis…………..………………..…….………………61 4.3.1.1 CH3NH3I Preparation……………….….......................61 4.3.1.2 The Effect of Preparation Condition on CH3NH3PbI3 Structure………………………………………………63 4.3.2 SEM Analysis…………..……….…………..…….…………...65 4.3.2.1 Sequential Deposition Method……………….............65 4.3.2.2 VASP Method………………………………………...67 4.3.3 BET Analysis……………………..............................................69 4.4 Solar Cell Characterization…….……………………...…………............70 4.4.1 I–V Measurement……....……………………………………...70 4.4.1.1 The Effect of Different Deposition Method of CH3NH3PbI3 Sensitizer on PSCs Performance……….70 4.4.1.2 The Effect of Different Atmospheric Condition on PSCs Performance……………….…………………………73 4.4.1.3 Cell Degradation Phenomena……..…………………..75 4.4.2 IPCE Measurement……….……………………………………77 5. Conclusion..……...………………………...………….………….…………….79 Future Work………………………………………………………………………...80 References………………………………………….………………………………81

    1. Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar Cells Efficiency Tables (Version 40). Prog. Photovoltaics 2012, 20, 606–614.
    2. Green, M. A. Silicon Solar-Cells – Evolution, High-Efficiency Design and Efficiency Enhancements. Semicond. Sci. Technol. 1993, 8, 1–12.
    3. Britt, J.; Ferekides, C. Thin Film CdS/CdTe Solar-Cell with 15.8 Percent Efficiency. Appl. Phys. Lett. 1993, 62, 2851 – 2852.
    4. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. 19.9%-Efficient ZnO/CdS/CuInGaSe Solar Cell with 81.2% Fill Factor. Prog. Photovoltaics 2008, 16, 235–239.
    5. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.
    6. Gratzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788–1798.
    7. Bisquert, J. Dilemmas of Dye-Sensitized Solar Cells. Chem. Phys. Chem. 2011, 12, 1633–1636.
    8. Snaith, H. J. Perovskites : The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.
    9. O’Regan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740.
    10. Snaith, H. J.; Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye Sensitized Solar Cells. Adv. Mater. 2007, 19, 3187–3200.
    11. Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media. Chem. Lett. 2012, 41, 397.
    12. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5 % Efficient Perovskite Quantum-Dot-Sensitized Solar Cells. Nanoscale 2011, 3, 4088–4093.
    13. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286, 945.
    14. Mitzi, D. B.; Feild, C. A.; Schlesinger, Z.; Laibowitz, R. B. Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3. J. Solid State Chem. 1995, 114, 159–163.
    15. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light sensitizer for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
    16. Burschka, J.; Pellet, N.; Moon, S-J.; Baker, R. H.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature. 2013, 499, 316–319.
    17. Qiu, Y.; Chen, W.; Yang, W. Double-Layered Photoanodes from Variable-Size Anatase TiO2 Nanospindles : A Candidate for High-Efficiency Dye-Sensitized Solar Cells. Angew. Chem., Int. Ed. 2010, 49, 3675–3679.
    18. Yan, K.; Qiu, Y.; Chen, W.; Zhang, M.; Yang, S. A Double Layered Photoanode Made of Highly Crystalline TiO2 Nanooctahedra and Agglutinated Mesoporous TiO2 Micorspheres for High Efficiency Dye Sensitized Solar Cells. Energy Environ. Sci. 2011, 4, 2168–2176.
    19. Hore, S.; Nitz, P.; Vetter, C.; Prahl, C.; Niggemann, M.; Kern, R. Scattering Spherical Voids in Nanocrystalline TiO2-Enhancement of Efficiency in Dye-Sensitized Solar Cells. Chem. Commun. 2005, 2011–2013.
    20. Pham, T. T. T.; Bessho, T.; Mathews, N.; Zakeeruddin, S. M.; Lam, Y. M.; Mhaisalkar, S.; Gratzel, M. Light Scattering Enhancement from Sub-Micrometer Cavities in the Photoanode for Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22, 16201–16204.
    21. Han, S. H.; Lee, S.; Shin, H.; Jung, H. S. A Quasi-Inverse Opal Layer Based on Highly Crystalline TiO2 Nanoparticles : A New Light-Scattering Layer in Dye-Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 546–550.
    22. Huang, F.; Chen, D.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2010, 20, 1301–1305.
    23. Lee, K. S.; Kwon, J.; Im, J. H.; Lee, C. R.; Park, N. G.; Park, J. H. Size-Tunable, Fast, and Facile Synthesis of Titanium Oxide Nanotube Powders for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4, 4164–4168.
    24. Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S. Park, N. G.; Kim, K.; Lee, W. I. Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchial Pore Generation with Nanoporous TiO2 Spheres. Adv. Mater. 2009, 21, 3668–3673.
    25. Koo, H. J.; Kim, Y. J.; Lee, M. H.; Lee, W. I.; Kim, K.; Park, N. G. Nano-Embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells. Adv. Mater. 2008, 20, 195–199.
    26. Ke, C.R.; Ting, J. M. Anatase TiO2 Beads having Ultra-Fast Electron Diffusion Rates for use in Low Temperature Flexible Dye-Sensitized Solar Cells. Journal of Power Sources 2012, 208, 316–321.
    27. Ke, C. R.; Chen, L. C.; Ting, J. M. Photoanodes Consisting of Mesoporous Anatase TiO2 Beads with Various Sizes for High-Efficiency Flexible Dye-Sensitized Solar Cells. J. Phys. Chem. C. 2012, 116, 2600–2607.
    28. Hardin, B. E.; Snaith, H. J.; McGehee, M. D. The Renaissance of Dye-Sensitized solar Cells. Nature Photonics 2012, 6, 162–169.
    29. Nam-Gyu Park. Organometal Perovskite Light Absorbers toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429.
    30. Gratzel, M. Dye-Sensitized Solid-State Heterojunction Solar Cells. MRS Bulletin 2005, 30, 23.
    31. Snaith, H. J.; Baker, R. H.; Chen, P.; Cesar, I.; Zakeeruddin, S. M.; Gratzel, M. Charge Collection and Pore Filling in Solid-State Dye-Sensitized Solar Cells. Nanotechnol. 2008, 19, 424003.
    32. Mende, L. S.; Gratzel, M. TiO2 Pore-filling and its Effect on the Efficiency of Solid-State Dye-Sensitized Solar Cells. Thin Solid Films 2006, 500, 296–301.
    33. Ding, I. K.; Tetreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Gratzel, M.; McGehee, M. D. Pore-Filling of Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Adv. Func. Mater. 2009, 19, 2431–2436.
    34. Boix, P. B.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Current Progress and Future Perspectives for Organic/Inorgnic Perovskites Solar Cells. Materials Today 2014, 17, 16–22.
    35. Kim, H. S.; Im, S. H.; Park, N. G. Organolead Halide Perovskite: New Horizons in Solar Cells Research. J. Phys. Chem. C. 2014, A–K.
    36. Xu, X. X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. A Red Metallic Oxide Photocatalyst. Nat. Mater. 2012, 11, 595–598.
    37. Cheng, Z.; Lin, J. Layered Organic–Inorganic Hybrid Perovskites: Structure, Optical Properties, Film Preparation, Patterning and Templating Engineering. Cryst. Eng. Comm. 2010, 12, 2646–2662.
    38. Mitzi, D. B.; Wang, S.; Field, C. A.; Chess, C. A.; Guloy, A. M. Conducting Layered Organic–Inorganic Halides Containing <110>-Oriented Perovskite Sheets. Science 1995, 267, 1473–1476.
    39. Alagona, G.; Ghio, C.; Kollman, P. Monte Carlo Simulation Studies of the Solvation of Ions. 1. Acetate Anion and Methylammonium Cation. J. Am. Chem. Soc. 1986, 108, 185–191.
    40. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751–767.
    41. Gabe, E. J. The Crystal Structure of Methylammonium Bromide. Acta Crystallogr. 1961, 14, 1296.
    42. Cohen, B. N.; Labarca, C.; Davidson, N.; Lester, H. A. Mutations in M2 Alter The Selectivity of the Mouse Nicotinic Acetylcholine Receptor for Organic and alkali Metal Cations. J. Gen. Physiol. 1992, 100, 373–400.
    43. Jianga, L. Q.; Guob, J. K.; Liua, H. B.; Zhua, M.; Zhoua, X.; Wuc, P.; Li, C. H. Prediction of Lattice Constant in Cubic Perovskite. J. Phys. Chem. Solids 2006, 67, 1531–1536.
    44. Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative Study on the Excitons in Lead-Halide-Based Perovskite Type Crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623.
    45. Poglitsch, A.; Weber, D. Dynamic Disorder in Methylammoniumtrihalogenplumbates (II) Observed by Millimeter-Wave Spectroscopy. J. Chem. Phys. 1987, 87, 6373–6378.
    46. Baikie, T.; Fang, Y.; Kadro, J. M. Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Gratzel, M.; White, T. J. Synthesis and Crystal Chemistry of the Hybrid Perovskite CH3NH3PbI3 for Solid-State Sensitized Solar Cell Application. J. Mater. Chem. A. 2013, 1, 5628–5641.
    47. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, s. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et. al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
    48. Lee, M. M.; Teuscher, J.; Miyasaka, I.; Murakami, T. M.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647.
    49. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2013, 6, 1739–1743.
    50. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapor Deposition. Nature 2013, 1–4.
    51. Chen, Q.; Zhou, H.; Hong, Z.; luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc. 2013, A–D.
    52. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732.
    53. Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Gratzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite Solar Cells Employing Organic Charge-Transport Layers. Nat. Photonics 2013, DOI: 10.1038/nphoton.2013.341.
    54. Kim, H. S.; Sero, I. M.; Pedro, V. G.; Santiago, F. F.; Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of Carrier Accumulation in Perovskite Thin-Absorber Solar Cells. Nat. Commun. 2013, 4, 2242.
    55. Bisquert, J. Chemical Capacitance of Nanostructured Semiconductors : Its Origin and Significance for Nanocomposite Solar Cells. Phys. Chem. Chem. Phys. 2003, 5, 5360–5374.
    56. Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Gratzel, M.; Seok, S. I. Nanostructures TiO2/CH3NH3PbI3 Heterojunction Solar Cells Employing Spiro-OMeTAD/Co-complex as Hole Transporting Material. J. Mater. Chem. A 2012, 1, 11842–11847.
    57. Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiency Over 10%. Acs Nano. 2010, 4420–4425.
    58. Hsu, C. W.; Chen, P.; Ting, J. M. Microwave-Assisted Hydrothermal Synthesis of TiO2 Mesoporous Beads Having C and/or N Doping for Use in High Efficiency All-Plastic Flexible Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2013, 160 (3), H160–H165.
    59. Chen, D.; Huang, F.; Cheng, Y. B.; Caruso, R. A. Mesoporous Anatase TiO2 Beads with High Surface Area and Controllable Pore Sizes : A Superior Candidate for High-Performance Dye-sensitized Solar Cells. Adv. Mater. 2009, 21, 2206–2210.
    60. Chen, D.; Cao, L.; Huang, F.; Imperia, P.; Cheng, Y. B.; Caruso, R. A. Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14–23 nm). J. Am. Chem. Soc. 2010, 132, 4438–4444.
    61. Beckmann, A. A Review of Polytypism in Lead Iodide. Cryst. Res. Technol. 2010, 45, 455–460.
    62. Agmon, N. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462.
    63. Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Van Schilfgaarde, M.; Walsh, A. Atomistic Origins for High-Performance in Hybrid Halide Perovskite Solar Cells. Cond-Mat.Mtrl-Sci. 2014. arXiv : 1402.4980v2.

    無法下載圖示 校內:2017-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE