| 研究生: |
白家南 Pai, Chia-Nan |
|---|---|
| 論文名稱: |
時域有限差分法之高頻串音分析 High Frequency Crosstalk Analysis of PCB Layouts Using FDTD Method |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 傳輸線 、微帶線 、馬克斯威爾方程式 |
| 外文關鍵詞: | PML, Prony's Method, coplanar strips, microstrips, FDTD |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著印刷電路板佈線密度的增加及CPU時脈頻率的增高,電磁干擾(EMI)、電磁耐受性(EMS)與電磁耦合等電磁相容性(EMC)的相關問題,成為未來PCB發展的重要關鍵因素之一。而本文所欲探討之現象,主要是電磁耦合所導致的串音問題,文中針對不同的傳輸線結構,如microstrips、coplanar strips與修正型微帶線等,採用全波馬克斯威爾方程式,用完美匹配層(PML)的邊界條件以時域有限差分法(FDTD)分析之。
就microstrips而言,串音電場值隨著導體寬度的增加及導線間距的增加而降低,且其接地方式因為迴路面積固定而較coplanar strips為佳。而就coplanar strips之結構而言,串音電場值隨著導體寬度的增加而降低;但若增加導線間距時,串音電場值則在5~15GHz頻段內會隨著導線間距增加,迴路面積增大而增加。另外,對電場源而言,rise time較小(訊號上升速度較快)之電場源其串音現象較為嚴重;反之,對於一個rise time較大之電場源,其串音電場值則隨著頻率之增加而漸趨弱小。
對於接地構形,coplanar strips之接地參考線越接近信號線時,串音電場值較小,串音問題能獲得較佳之改善;而對於修正型微帶線結構,由於基板上導線與下接地線成對稱,互感值較小而能有效減低串音現象。另外,對PCB之基板而言,由於串音電場隨著自容量增加而減小,故介電常數大者為佳;但介電常數較小者在某些諧頻時decay較快。
With the increasing density of printed circuit board (PCB) layouts and higher CPU clock frequency, the EMC problem becomes one of the dominant factors of future PCB development. In this thesis, a finite difference time domain (FDTD) numerical method is used to simulate the crosstalk, the trace-to-trace coupling which distorts the signal integrity, between PCB lands for different PCB layouts including microstrips and coplanar strips in frequency ranges up to 20GHz. And Maxwell’s equations are chosen to simulate the crosstalk phenomena, and perfectly matched layers (PML) are used as the absorbing boundary condition.
For microstrips, the crosstalk electric fields decrease as the width of metal lines and the distance between two different metal lines increase. And for coplanar strips, the crosstalk electric fields also decrease as the width of metal lines increase, but it would increase when the distance between different metal lines increase because of the increase of the loop area. In addition, for sources of the PCB circuits, the smaller the rise time is, the more serious the crosstalk phenomena are.
Additionally, for grounding, when the grounding lines of coplanar strips are as near as signal lines as possible, the crosstalk electric fields are smaller. And for modified microstrips, the phenomenon of crosstalk can be reduced because signal lines and grounding lines are symmetric with the substrate. Furthermore, it is observed that the crosstalk can be reduced by using appropriate layouts, and the nonsynchronous phenomenon caused by different mode velocities can be reduced by proper arrangement of ground planes.
[1] Gravelle, L. B. and Wilson, P. F., “EMI/EMC in Printed Circuit Boards-A literature Review”, IEEE Trans. on EMC, vol. 34, no. 2, pp.109~116, 1992.
[2] Hill, D. A., Cavcey, K. H. and Johnk, R. T., “Crosstalk Between Microstrip Transmission Lines”, IEEE Trans. on EMC, vol. 36, no. 4, pp.314~321, 1994.
[3] Gupta, K. C., Garg, R. and Bahl, I. J, Microstrip Lines and Slotlines, Artech House, Dedham, MA, 1979.
[4] Paul, C. R., “Derivation of Common Impedance Coupling from the Transmission Line Equations”, IEEE Trans. on EMC, vol. 34, no. 3, pp.315~319, 1992.
[5] Paul, C. R., “Modeling electromagnetic interference properties of printed circuit boards”, IBM J. Res. and Develop., vol. 33, no. 1 pp.33~50, 1989.
[6] Khan, R. L. and Costache, G. I., “Finite Element Method Applied to Modeling Crosstalk Problems on Printed Circuit Boards”, IEEE Trans. on EMC, vol. 31, no. 1, pp.5~15, 1989.
[7] Rainal, A. J., “Transmission properties of various styles of printed wiring boards”, Bell System Tech. J., vol. 58, pp.995~1026, 1979.
[8] Theune, D., Thiele, R., John, W. and Lengauer, T., “Robust Methods for EMC-Driven Routing”, IEEE Trans. on Computer-Aided Design of Integrated and Systems, vol. 13, no. 11, pp.1366~1378, 2001.
[9] Gordon, C. and Roselle, K. M., “Estimating Crosstalk in Multiconductor Transmission Lines”, IEEE Trans. on Components, Packaging, and Manufacturing Technology – Part B, vol. 19, no. 2, pp.273~277, 1996.
[10] Sohn, Y. S., Lee, J. C., Park H. J. and Cho S. I., “Empirical Equations on Electrical Parameters of Coupled Microstrip Lines for Crosstalk Estimation in Printed Circuit Board”, IEEE Trans. on Advanced Packaging, vol. 24, no. 4, pp.521~527, 2001.
[11] Cheng, D. K., Field and Wave Electromagnetics, Addison Wesley, Reading, Mass., 1983.
[12] Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations”, IEEE Trans. on Antennas and Propagation, vol. 14, pp.302~307, 1966.
[13] Taflove, A., Umashankar, K. R., Beker, B., Harfoush, F. and Yee, K. S., “Detailed FD-TD Analysis of Electromagnetic Fields Penetrating Narrow Slots and Lapped Joints in Thick Conducting Screens”, IEEE Trans. on Antennas and Propagation, vol. 36, no. 2, pp.302~307, 1966.
[14] Sadiku, M. N. O., Numerical Techniques in Electromagnetics, CRC Press, Boca Raton, Fla., pp.179~187, 1992.
[15] Taflove, A., Computational Electrodynamics: The Finite-Difference Time- Domain Method, Artech House, Boston, pp.81~106, 1995.
[16] Engquist, B. and Majda, A., “Absorbing Boundary Conditions for the Numerical Simulation of Waves”, Mathematics of Computation, vol. 31, pp.629~651, 1977.
[17] Mur, G., “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations”, IEEE Trans. on EMC, vol. 23, pp.377~382, 1981.
[18] Trefethen, L. N. and Halpern, L., “Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions”, Mathematics of Computation, vol. 47, pp.421~435, 1986.
[19] Moore, T. G., Blaschak, J. G., Taflove, A. and Kriegsmann, G. A., “Theory and Application of Radiation Boundary Operators”, IEEE Trans. on Antennas and Propagation, vol. 36, no.12, pp.1797~1812, 1988.
[20] Higdon, R. L., “Numerical Absorbing Boundary Conditions for the Wave Equation”, Mathematics of Computation, vol. 49, pp.65~90, 1987.
[21] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of Computational Physics, vol. 114, pp.185~200, 1994.
[22] Berenger, J. P., “Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of Computational Physics, vol. 127, pp.363~379, 1996.
[23] Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, New York, 1992.
[24] Odate, Y., Usami, T., Otsuka, K. and Suga, T., “A Measurement and Simulation of Transmission Lines on Microstrip and Stacked-Pair Structure for High Speed Signals”, IEEE Electronic Components and Technology Conference, pp.526~529, 2000.
[25] Montrose, M. I., EMC and the Printed Circuit Board : Design, Theory, and Layout Made Simple, IEEE Press, New York, 1999.
[26] Schamberger, M. A., Kosanovich, S. and Mittra, R., “Parameter Extration and Correction for Transmission Lines and Discontinuities Using the Finite-Difference Time-Domain Method”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 6, pp.919~925, 1996.
[27] Pereda, J. A., Vielva, L. A., Vegas, A. and Prieto A., “Computation of Resonant Frequencies and Quality Factors of Open Dielectric Resonators by a Combination of the Finite-Difference Time-Domain and Prony’s Methods”, IEEE Microwave and Guided Wave Letters, vol. 2, no. 11, pp.431~433, 1992.
[28] Tsui, James, Digital Techniques for Wideband Receivers, Artech House, Boston, pp.400~407, 1995.