簡易檢索 / 詳目顯示

研究生: 楊郁珊
Yang, Yu-San
論文名稱: 探討磷酸酶PP2A調節次單元B56γ3進核的機制
Study the Mechanism of Nuclear Localization of the B56γ3 Regulatory Subunit of PP2A
指導教授: 蔣輯武
Chiang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 73
中文關鍵詞: 磷酸酶PP2A調節性B次單元細胞週期進核核定位信號
外文關鍵詞: PP2A, B56γ3, cell cycle, nuclear import, nuclear localization signal
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷酸酶PP2A是一種絲胺酸/蘇胺酸磷酸酶,組成PP2A的三個次單元分別是構成結構鷹架的A次單元,負責催化功能的C次單元,以及種類相當多樣的調節性B次單元。這些種類繁多的B次單元可以決定PP2A全酶的活性、受質特異性,以及其在細胞中的位置。我們的研究主要聚焦在探討具有腫瘤抑制功能的B56γ3調節次單元,座落於細胞核的分子機制。我們實驗室之前已經發現,在NIH3T3細胞中,當細胞處在細胞間期時,B56γ3主要是核質均勻的分布在整個細胞中。而當細胞被同步化在細胞週期的S時期時,B56γ3則會集中在核。根據序列分析,我們預測了至少四個核定位信號(nuclear localization signals, 以下簡稱NLSs), 分別是NLS1, 2, 3, 與4。這四段NLS彼此相當靠近且座落於B56γ3的C端。我們的結果顯示,刪除這四段可能的NLS都不影響 B56γ3於核的座落。而更進一步刪除預測之NLS1上游的100個胺基酸,則會將B56γ3侷限在細胞質,與此結果一致的是,包含這100個胺基酸的蛋白序列足以驅使EGFP-PK進入細胞核內。另一方面,依序截斷這些可能的NLS及其周邊的序列後發現,刪除預測的NLS2會促進B56γ3在細胞間期時,集中在核的比例,進一步刪除位於NLS1與NLS2中的連接序列,則會阻止在細胞間期以及細胞週期S時期,B56γ3集中在核的比例。此外,探討調節B56γ3於細胞週期S時期,集中在核的訊息傳遞路徑,我們發現,抑制AMPK的活性會降低 B56γ3不論是在細胞間期或細胞週期S期,集中在核的比例,而這樣核集中比例下降的情形,則與AMPK抑制劑的濃度呈現正相關。與此一致地,突變位於NLS1與NLS2連接序列上,可能的AMPK磷酸化位點—絲胺酸440,使其無法再被磷酸化,則會減少B56γ3於細胞週期S時期,集中在核的情形。入核轉運受體(以下稱importin)之一的importin-α是一種轉接蛋白(adaptor protein),透過importin-α結合帶有NLS的貨物蛋白與importin-,使得帶有NLS的貨物能被運輸至細胞核內。如同預期,胞外pull down分析結果顯示,B56γ3會與importin-α及importin-β有交互作用。綜合實驗結果,首先,我們發現,B56γ3有一段區域對於其細胞週期S時期的進核極為關鍵,同時,我們的結果也說明了B56γ3可能藉由importin-α仰賴抑或是importin-α不相關的方式進核。

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase which comprises three subunits: the scaffolding A subunit, the catalytic C subunit, and the variable regulatory B subunit. The B subunits are involved in determining the activity, substrate specificity, and subcellular localization of PP2A. Our study mainly focused on characterization of molecular mechanisms underlying nuclear localization of B56γ3, which has been reported to function as a tumor suppressor regulatory subunit of PP2A. We have found that in NIH3T3 cells, B56γ3 is distributed homogenously throughout the cell in steady state, and becomes enriched in the nucleus during S phase in cell cycle-synchronized cells. We have predicted at least four nuclear localization signals (NLSs), NLS1, 2, 3, 4, located closely to each other at the C terminus within B56γ3 by sequence analyses, but found that deletion of these putative NLSs did not impair B56γ3 nuclear localization. Further truncation of 100 amino acids upstream of the putative NLS1 confined the B56γ3 in cytosol, and the domain encompassing the 100-amino acid drove fused EGFP-PK into the nucleus. Serial truncation analyses of the putative NLSs and their flanking sequences showed that loss of the putative NLS2 after deletion of putative NLS3 and NLS4 resulted in enhanced levels of nuclear localized B56γ3 in steady-state cells. Subsequent deletion of the linker between the putative NLS1 and NLS2 abolished the B56γ3 nuclear enrichment phenotype in both asynchronous and S-phase synchronized cells. To identify the signaling pathway regulating the S-phase nuclear enrichment of B56γ3, we found that inhibition of AMPK reduced nuclear localization of B56γ3 in both steady state and S phase in a dose-dependent manner, and phosphorylation defective mutation at Ser440, the potential AMPK targeting site within the linker region, impaired the S-phase nuclear enrichment of B56γ3. Further, in vitro pull down analyses showed that B56γ3 interacts with both importin-α and importin-β. In addition, co-immunoprecipitation analyses revealed that B56γ3 was associated with importin-β in cells. In summary, we found domains crucial for steady state and S-phase nuclear enrichment of B56γ3, and our data also suggest that B56γ3 may enter the nucleus through an importin-α-dependent and/or -independent mechanism.

    Table of Contents 1 Figure Contents 3 Introduction 5 Protein phosphatase 2A (PP2A) 5 The Structure of the PP2A holoenzyme 5 B regulatory subunits of PP2A 7 Subcellular distribution of members in B56 family 7 B56γ splice isoforms 8 PP2A functions as a tumor suppressor 9 The classical nuclear import pathway 10 The non-classical nuclear import pathway 11 The structure of karyopherin family and interactions with substrates 12 Nuclear localization signal (NLS) 13 Materials and Methods 15 Antibodies and reagents 15 DNA constructs and retrovirus preparation 15 Cell culture 16 Selection of cells stably expressing HA-tagged B56γ3 and its truncation mutants 17 Immunofluorescence 17 Immunoblotting and immunoprecipitation 17 Recombinant proteins 18 In vitro pull-down analysis 19 In cell pull-down analysis 20 Results 21 B56γ3 is ubiquitously expressed throughout the cell in steady state, and becomes enriched in the nucleus in S phase of the cell cycle. 21 Sequence analysis shows that there are 4 putative NLSs within the C-terminus of B56γ3 21 Loss of putative NLSs does not impair nuclear localization of B56γ3 22 The domain encompassing a.a. 305-414 is important for nuclear localization of B56γ3 23 The linker segment between the putative NLS1 and NLS2 is required for S-phase nuclear enrichment of B56γ3 24 The S-phase nuclear enrichment is phosphorylation-dependent, and Ser440 within the linker segment of B56γ3 is critical for this phenomenon 25 Investigate the signaling pathways controlling nuclear enrichment of B56γ3 26 B56γ3 directly interacts with importin-α and -β in vitro 27 B56γ3 interacts with importin-β in cells 28 Conclusion 29 Discussion 30 Existence of the c-terminal sequence after the linker segment of B56γ3 may mask the potential NLS 30 A 27-amino acid domain at C-terminus of B56γ1 may be involved in S-phase nuclear enrichment of B56γ1 30 B56γ1 and B56γ3 are enriched in the nucleus through different mechanisms 31 A proposed model of conformation-dependent nuclear import of B56γ3 32 References 34 Figures 38 Supplement 58 Appendix 62 作者簡歷 73

    1. McCright, B., Rivers, A.M., Audlin, S. & Virshup, D.M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271, 22081-22089 (1996).
    2. Wang, Z., et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164-1166 (2004).
    3. Strack, S., et al. Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding A subunits. J Biol Chem 277, 20750-20755 (2002).
    4. Cho, U.S. & Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445, 53-57 (2007).
    5. Lechward, K., Awotunde, O.S., Swiatek, W. & Muszynska, G. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol 48, 921-933 (2001).
    6. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417-439 (2001).
    7. Chen, Y.G., et al. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 231, 534-544 (2006).
    8. Eichhorn, P.J., Creyghton, M.P. & Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795, 1-15 (2009).
    9. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99-110 (1999).
    10. Xing, Y., et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127, 341-353 (2006).
    11. Xu, Y., et al. Structure of the protein phosphatase 2A holoenzyme. Cell 127, 1239-1251 (2006).
    12. Shi, Y. Assembly and structure of protein phosphatase 2A. Sci China C Life Sci 52, 135-146 (2009).
    13. Van Hoof, C. & Goris, J. Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim Biophys Acta 1640, 97-104 (2003).
    14. Schonthal, A.H. Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett 170, 1-13 (2001).
    15. Sontag, E., Nunbhakdi-Craig, V., Bloom, G.S. & Mumby, M.C. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol 128, 1131-1144 (1995).
    16. Healy, A.M., et al. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol Cell Biol 11, 5767-5780 (1991).
    17. Turowski, P., Myles, T., Hemmings, B.A., Fernandez, A. & Lamb, N.J. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 10, 1997-2015 (1999).
    18. Arnold, H.K. & Sears, R.C. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26, 2832-2844 (2006).
    19. Bode, A.M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805 (2004).
    20. Margolis, S.S., et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127, 759-773 (2006).
    21. Gigena, M.S., Ito, A., Nojima, H. & Rogers, T.B. A B56 regulatory subunit of protein phosphatase 2A localizes to nuclear speckles in cardiomyocytes. Am J Physiol Heart Circ Physiol 289, H285-294 (2005).
    22. Flegg, C.P., et al. Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56alpha: Role of B56alpha in nuclear export of the catalytic subunit. J Biol Chem (2010).
    23. Tehrani, M.A., Mumby, M.C. & Kamibayashi, C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem 271, 5164-5170 (1996).
    24. Muneer, S., et al. Genomic organization and mapping of the gene encoding the PP2A B56gamma regulatory subunit. Genomics 79, 344-348 (2002).
    25. Bialojan, C. & Takai, A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256, 283-290 (1988).
    26. Suganuma, M., et al. Calyculin A, an inhibitor of protein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res 50, 3521-3525 (1990).
    27. Fujiki, H. & Suganuma, M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res 61, 143-194 (1993).
    28. Hahn, W.C., et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464-468 (1999).
    29. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev 15, 34-41 (2005).
    30. Rangarajan, A., Hong, S.J., Gifford, A. & Weinberg, R.A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171-183 (2004).
    31. Zhao, J.J., Roberts, T.M. & Hahn, W.C. Functional genetics and experimental models of human cancer. Trends Mol Med 10, 344-350 (2004).
    32. Chen, W., et al. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127-136 (2004).
    33. Calin, G.A., et al. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19, 1191-1195 (2000).
    34. Colella, S., et al. Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. Int J Cancer 93, 798-804 (2001).
    35. Suzuki, K. & Takahashi, K. Reduced expression of the regulatory A subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. Int J Oncol 23, 1263-1268 (2003).
    36. Wang, S.S., et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science 282, 284-287 (1998).
    37. Takagi, Y., et al. Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut 47, 268-271 (2000).
    38. Ruediger, R., Pham, H.T. & Walter, G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20, 1892-1899 (2001).
    39. Deichmann, M., Polychronidis, M., Wacker, J., Thome, M. & Naher, H. The protein phosphatase 2A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res 11, 577-585 (2001).
    40. Ito, A., et al. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 19, 562-571 (2000).
    41. Ito, A., et al. A truncated isoform of the protein phosphatase 2A B56gamma regulatory subunit may promote genetic instability and cause tumor progression. Am J Pathol 162, 81-91 (2003).
    42. Koma, Y.I., Ito, A., Watabe, K., Kimura, S.H. & Kitamura, Y. A truncated isoform of the PP2A B56gamma regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance. Histol Histopathol 19, 391-400 (2004).
    43. Gorlich, D. & Mattaj, I.W. Nucleocytoplasmic transport. Science 271, 1513-1518 (1996).
    44. Sherman, M.P., de Noronha, C.M., Heusch, M.I., Greene, S. & Greene, W.C. Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 75, 1522-1532 (2001).
    45. Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci 23, 185-189 (1998).
    46. Harreman, M.T., et al. Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J Biol Chem 279, 20613-20621 (2004).
    47. Mattaj, I.W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67, 265-306 (1998).
    48. Fried, H. & Kutay, U. Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60, 1659-1688 (2003).
    49. Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-451 (2003).
    50. Gorlich, D., et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5, 383-392 (1995).
    51. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607-660 (1999).
    52. Moroianu, J., Blobel, G. & Radu, A. The binding site of karyopherin alpha for karyopherin beta overlaps with a nuclear localization sequence. Proc Natl Acad Sci U S A 93, 6572-6576 (1996).
    53. Efthymiadis, A., Briggs, L.J. & Jans, D.A. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273, 1623-1628 (1998).
    54. Truant, R. & Cullen, B.R. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19, 1210-1217 (1999).
    55. Fagotto, F., Gluck, U. & Gumbiner, B.M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol 8, 181-190 (1998).
    56. Peifer, M., Berg, S. & Reynolds, A.B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789-791 (1994).
    57. Yano, R., Oakes, M.L., Tabb, M.M. & Nomura, M. Yeast Srp1p has homology to armadillo/plakoglobin/beta-catenin and participates in apparently multiple nuclear functions including the maintenance of the nucleolar structure. Proc Natl Acad Sci U S A 91, 6880-6884 (1994).
    58. Pemberton, L.F., Blobel, G. & Rosenblum, J.S. Transport routes through the nuclear pore complex. Curr Opin Cell Biol 10, 392-399 (1998).
    59. Weis, K., Ryder, U. & Lamond, A.I. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J 15, 1818-1825 (1996).
    60. Gorlich, D., Henklein, P., Laskey, R.A. & Hartmann, E. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 15, 1810-1817 (1996).
    61. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94, 193-204 (1998).
    62. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat Struct Biol 6, 388-397 (1999).
    63. Cingolani, G., Petosa, C., Weis, K. & Muller, C.W. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221-229 (1999).
    64. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499-509 (1984).
    65. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615-623 (1991).
    66. Shirakawa, F. & Mizel, S.B. In vitro activation and nuclear translocation of NF-kappa B catalyzed by cyclic AMP-dependent protein kinase and protein kinase C. Mol Cell Biol 9, 2424-2430 (1989).
    67. Funayama, N., Fagotto, F., McCrea, P. & Gumbiner, B.M. Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J Cell Biol 128, 959-968 (1995).
    68. Lee, T.Y., et al. The B56{gamma}3 regulatory subunit of PP2A regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J Biol Chem (2010).
    69. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24, 34-36 (1999).
    70. Mulder, N.J., Kersey, P., Pruess, M. & Apweiler, R. In silico characterization of proteins: UniProt, InterPro and Integr8. Mol Biotechnol 38, 165-177 (2008).
    71. Lin, C.T., Ho, C.L. & Chiang, C.W. Characterize the mechanisms of nucleocytoplasmic shuttling of the PP2A B56γ3 regulatory subunit. master thesis, NCKU (2008).

    下載圖示 校內:2015-08-30公開
    校外:2015-08-30公開
    QR CODE