簡易檢索 / 詳目顯示

研究生: 陳智偉
Chen, Jhin-Wei
論文名稱: 利用光的部分穿透與曝光技術應用於單一光罩雙鑲嵌的製程研究
Single Mask Dual Damascene Structure Fabrication Using Partial Transmission and Exposure Technique
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 57
中文關鍵詞: 部分曝光鉻薄膜雙鑲嵌結構穿透度
外文關鍵詞: Dual damascene, Chromium film transmittance, partial exposure, Chromium film
相關次數: 點閱:67下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙鑲嵌(Dual Damascene)製程結構已廣泛用於銅金屬連線,而製作方式有很多種,目前最常用的有中介窗優先(via first)、溝漕優先(Trench first)以及內嵌硬質罩幕(Buried hard mask),然而不論使用哪種方式製作總是會用到蝕刻中止層或硬質罩幕層搭配低介電(low k)材料使得整個製程複雜。不管用何種方法製作雙鑲嵌結構,都需要兩面光罩及兩次曝光程序,在現今先進製程的光罩一面需要兩百萬元,而ㄧ層金屬層就需要兩面光罩將增加晶片製造成本。而隨著晶片尺寸的縮小,也增加了中介窗與溝漕的對準誤差(misalignment)導致微影失敗需重新微影。隨著金屬層數的增加以上問題的出現增加了製程花費,也降低了生產速度與良率。
    本論文主要是研究以不同光穿透度的金屬薄膜,製作一片光罩同時具有中介窗與溝漕圖樣,並設計光罩的中介窗與溝漕有不同的能量穿透,其中的溝漕我們以鉻(Cr)薄膜減少曝光能量造成部分曝光,中介窗的部份以全透光方式處理,因此達到一次曝光能形成光阻雙鑲嵌(Dual Damascene)結構,最後利用乾蝕刻使光阻雙鑲嵌結構轉移至下面的基板。光罩設計及曝光模擬部分此研究以KLA-Tencor 公司的Prolith v.9.2模擬軟體來進行。
    我們可以藉此單一光罩取代傳統兩面光罩來製作雙鑲嵌結構,降低光罩成本,而在製程上也僅需ㄧ次微影、蝕刻、灰化及清洗,降低很多的生產成本且簡化製程並降低對準誤差問題。

    Dual damascene process has been used for copper interconnect.There are many schemes to fabricate dual damascene structure. The most common integration approaches for the dual damascene architecture are via first, trench first and buried hard mask. Which mask
    first, using etch stop and hard masks or not and the use of ultra low k materials in advanced interconnect make dual damascene process very complicated.
    No matter which dual damascene scheme used all of them need two masks and two lithography process. One advanced mask cost about two million NT$ and one metal layer needs two masks. With the increasing trend of metal layers of modern IC, the mask cost will add additional burden on already high manufacture cost. With rapidly decreasing chip feature size, the misalignment tolerance is not that far from critical dimension (CD). The existence of misalignment between via and trench mask will cause more rework on lithography steps. The increases of metal layers and higher rework rate on high cost lithography steps can only make things worse. Misalignment will also degrade the process and product yield. It is also a reliability killer.
    This thesis is to develop a differential exposure lithography process between via and trench using partial transmission on trench. On the mask, it combines via and trench pattern layout. To achieve one exposure having dual damascene shape on photo resist, we need different exposure energy settings or conditions at via and trench areas at the same time. This thesis used light’s partial transmission technique to weaken the exposure energy on trench to obtain partial exposure. Semi-transparent chromium(Cr) film on trench area was used to absorb
    some energy of the exposure light to create partial exposure on trench.Via area can be simply clear (no Cr for positive resist) to obtain full exposure. Dry etching was then used to transfer the dual damascene shape photoresist to underlying substrate.
    The thesis also used KLA Tencor’s Prolith v.9.2 to simulate the combined mask structures to optimize mask design and exposure conditions.
    Using this unique single mask instead of two traditional masks, we can obtain photoresist dual damascene structure in one exposure. This dual damascene structure can be transferred to underlying dielectric via selective etch process. This cuts the high mask cost in half. With
    one mask, we need only one lithography step, one etch, one ash and one clean instead of two each. It saves process cost a lot, simplifies the complicated two mask dual damascene processes and completely removed two masks’ misalignment problems. Besides saving mask and process cost, without misalignment’s issues. It will also boost yield and improves product reliability.

    Chinese abstract English abstract Contents Table Captions Figure Captions Chapter 1 Introduction 1.1 Lithography background……………………………………1 1.2 Dual damascene process of interconnect……………3 1.3 Lithography and resolution enhancement techniques…12 1.4 Purpose……………………………………………22 Chapter 2 Concept of single mask dual damascene process 2.1 Single mask dual damascene process……………24 2.2 Mask design………………………………………………26 2.3 Simulation procedure………………………………29 Chapter 3 Result and discussion 3.1 Simulation results and discussions of the combined mask using 248nm wavelength…………………………………31 3.2 Fabrication of Dual Damascene structure using Mercury Lamp lithography………………………………………37 3.3 Mask Substrate preparation…………………………38 3.4 Dual Damascene mask results………………………………42 3.5 Dual Damascene mask Inspect Instrument……………46 Chapter 4 Conclusion and Future Work 4.1 Conclusion……………………………………………………55 4.2 Future work…………………………………………………56

    [1] Xuelong Shi,Allen Fung, Stephen Hsu, Zongyu Li, Tim Nguyen,Robert Socha, Will Conley, Mircea Dusa, "Dual damascene photo process using negative tone resist", Proceedings of SPIE Vol.3999 (2000)
    [2] Mark T. Bohr, "Interconnect scaling-the real limiter to high performance ULSI", IEEE IEDM, 10-13 DEC. pp.241-244 (1995)
    [3]Burn J. Lin, “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography”, Society of Photo-Optical Instrumentation Engineers, pp.7-12 (2002)
    [4]Ban P. Wang, Anurag Mittal, Yu Cao, Greg Starr, “Nano-CMOS circuit and physical design”, John Wiley & Sons Inc. US. (2004)
    [5]Bruce W. Smith, “Mutual optimization of resolution enhancement techniques”, J. Microlith Microfabrication, Microsyst. 1, 95 (2002)
    [6]Yong-Ho Oh, Jai-Cheol Lee, and Sungwoo Lim ” Resolution
    enhancement through optical proximity correction and stepper parameter optimization for 0.12-μm mask pattern” Proc. SPIE Int. Soc. Opt. Eng. 3679, 607 (1999)
    [7] Puneet Gupta, Andrew B. Kahng, Swamy Muddu, Sam Nakagawa,Chul-Hong Park, “Modeling OPC complexity for design for manufacturability”, Proc. SPIE Vol.5992, p. 612-622, 25th Annual BACUS Symposium on Photomask Technology; J. Tracy Weed,Patrick M. Martin; Eds. (Nov 2005)
    [8]Emiko Sugiura, Hisashi Watanabe, Tadashi Imoriya, Yoshihiro Todokoro, “Fabrication and pattern transfer of optical proximity correction(OPC) mask”, SPIE Vol.2254 Photomask and X-Ray Mask Technology, pp.183-192 (1994)
    [9] Eric S. Wu, Balu Santhanam, and S. R. J. Brueck, “General framework for 36 parameter optimization in imaging interferometric lithography”, J. Microlith Microfabrication, Microsyst. 4, 023009 (2005)
    [10]Marc D. Levenson, N. S. Viswanwthan, Eobert A. Simpson,
    “Improving resolution in photolithography with a phase-shifting mask”, IEEE Transactions on Electron Devices, vol. ed-29, No. 12 pp.1828-1836 (1982)
    [11]Marc D. Levenson, “What is a phase-shifting mask?”, SPIE Vol.1496 10th Annual Symposium on Microlithography (1990)
    [12]B. J. Lin, “Off-axis illumination – Working principles and comparison with alternating phase-shifting masks”, SPIE Vol. 1927 Optical/Laser Microlithography VI (1993)
    [13]L. Arnaud, T. Berger, G. Reimbold, “Evidence of grain-boundary versus interface diffusion in electromigration experiments in copper damascene interconnects”, Journal of Applied Physics, Vol. 93 Issue 1, pp.192 (2003)
    [14]Stanley Wolf, “Introduction to dual damascene interconnect processes”, SILICON PROCESSING FOR THE VLSI ERA Vol. 4, p p . 6 7 4 - 6 7 9 P u b l i s h e r : L a t t i c e P r e s s ( 2 0 0 4 ) .
    [15]P. Josh Wolf, “Overview of Dual Damascene Cu/Low-k
    I n t e r c o n n e c t ” , I I T C w o r k s h o p ( 2 0 0 4 )
    [16]Robert H. Havemann and James A. Hutchby, “High-Performance Interconnects: An Integration Overview”, PROCEEDINGS OF THE IEEE, Vol. 89, No. 5, May (2001)
    [17]Ogawa, E.T.; Ki-Don Lee; Blaschke, V.A.; Ho, P.S.,”
    Electromigration reliability issues in dual-damascene Cu
    interconnections” IEEE Transactions on Reliability, Volume 51,Issue 4, Page 403 – 419, Dec. 2002
    [18]龍文安, “半導體微影技術", 五南圖書出版公司, 台灣, pp.
    359-361 (2004)
    [19] Introduction to Advanced Lithography Benjamin Lin, CRD,UMC2006/3/20

    下載圖示 校內:2008-07-19公開
    校外:2008-07-19公開
    QR CODE