| 研究生: |
郭佰寯 Kuo, Bai-Jiun |
|---|---|
| 論文名稱: |
Optineurin 和其關聯蛋白的結構研究 Structural Studies of Optineurin with Related Proteins |
| 指導教授: |
羅玉枝
Lo, Yu-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | Optineurn 、Light chain 3 、Tank Binding kinase 1 、X 射線晶體學 |
| 外文關鍵詞: | Optineurin, Light chain 3, Tank binding kinase 1, X-ray crystallography |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Optineurin (OPTN) 是一個具有多功能的蛋白,參與在許多訊息傳遞的路徑上,像是NFκB 的活化、自噬作用或者是自體免疫反應。在先前的研究中指出OPTN可藉由與NEMO競爭polyubiquitins來進行NFκB活化的負向調控。OPTN也是自噬作用的受體,當它被TBK1活化後可與將要被自噬的物質及LC3結合形成自噬囊泡,自噬囊泡會再跟溶菌體融合以達成自噬作用。在遭受到病毒感染時OPTN會跟TBK1進行結合,但是OPTN在這條訊息傳遞的路徑上,是促進還是抑制TBK1/IRF3複合體目前仍然尚未釐清。此外,OPTN的突變也跟許多疾病有關,像是原發性開角型青光眼、肌萎縮性脊髓側索硬化症還有佩吉特氏病。OPTN參與了如此多重要的疾病與訊息傳遞路徑,所以我的研究主題希望透過OPTN跟他交互作用的蛋白質之間之結構的研究去探討OPTN在這些訊息傳遞路徑的關係與角色。在我的研究中,我設計了16種不同長度的OPTN,包含了其N端的coil-coiled domain、LIR、UBAN來跟TBK1、LC3還有polyubiquitins結合。利用大腸桿菌的系統去表達蛋白並且利用親和性的純化與高速液態層析儀純化。純化的蛋白質會進行晶體篩選找到適合的長晶條件,經過優化晶體,得到合適的晶體後再以x光來解結構。目前我已經拿到OPTN-polyUb複合體的晶體,也進行x光照射,最好的繞射解析度到達4.5Å。我試著CCP4i軟體的分子置換的方法去解析結構,但是解析度並不夠去解出結構,。另一方面OPTN與OPTN-LC3的蛋白複合體雖然可以有足量的蛋白,但是尚未有晶體可以去解出結構。在OPTN-TBK1沒有辦法拿到得到任何穩定的蛋白質複合物去長晶體。因此,未來會繼續去表達更多蛋白質來得到更高品質的晶體以便於來解析結構。
Optineurin (OPTN) is a multifunctional protein involved in a lot of signaling pathways, including NFκB activation, autophagy, and innate immune responses, etc. The previous studies have shown that OPTN is a negative regulator which competes with NEMO to bind polyubiqutins in order to down regulating NFκB activation. OPTN is also identified as an autophagy receptor, which can be activated by Tank-binding kinase 1 (TBK1) and subsequently bind with specific cargo and autophagy modifier light chain 3 (LC3) in the selective autophagy response leading to lysosome degradation. Upon viral infection, OPTN will bind to TBK1. However, how OPTN activates or inhibits the activation of the TBK1/IRF3 complex is still unclear. In addition, OPTN mutations are correlated with some diseases such as primary open angle glaucoma, amyotrophic lateral sclerosis (ALS), and Paget disease of bone. According to its crucial role in these pathways and diseases, to figure out how OPTN interacts with its associating proteins in these pathways is the main goal of my thesis. In my study, I designed different lengths of OPTN fragments containing the N-terminal coil-coiled domain, LIR, UBAN for making the complexes with TBK1, LC3, and polyUb, respectively. The protein complexes were expressed in E. coli expression system and the protein complexes were purified by FPLC. I have obtained stable OPTN-polyUb protein complexes from and the crystals from the crystal screening kits for x-ray diffraction. The resolution of best diffraction data set I got so far is 4.5 angstrom I used CCP4i software to performed molecular replacement experiment. However, the resolution is not good enough for me to solve the structure. For the complex of OPTN-LC3, although I have obtained the stable protein complex we could not get the crystals for solving structure. For OPTN-TBK1 I have not obtained any stable protein complex for crystallization. Therefore, my future works will focus on expressing more proteins and getting crystals of higher quality for solving the crystal structures.
Ashford, T.P., and Porter, K.R. (1962). Cytoplasmic components in hepatic cell lysosomes. The Journal of cell biology 12, 198-202.
De Marco, N., Buono, M., Troise, F., and Diez-Roux, G. (2006). Optineurin increases cell survival and translocates to the nucleus in a Rab8-dependent manner upon an apoptotic stimulus. The Journal of biological chemistry 281, 16147-16156.
Ghosh, G., van Duyne, G., Ghosh, S., and Sigler, P.B. (1995). Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373, 303-310.
Gleason, C.E., Ordureau, A., Gourlay, R., Arthur, J.S., and Cohen, P. (2011). Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta. The Journal of biological chemistry 286, 35663-35674.
Hayden, M.S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes & development 18, 2195-2224.
Israel, A. (2010). The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harbor perspectives in biology 2, a000158.
Johansen, T., and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296.
Li, Y., Kang, J., and Horwitz, M.S. (1998). Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Molecular and cellular biology 18, 1601-1610.
Lo, Y.C., Lin, S.C., Rospigliosi, C.C., Conze, D.B., Wu, C.J., Ashwell, J.D., Eliezer, D., and Wu, H. (2009). Structural basis for recognition of diubiquitins by NEMO. Molecular cell 33, 602-615.
Mankouri, J., Fragkoudis, R., Richards, K.H., Wetherill, L.F., Harris, M., Kohl, A., Elliott, R.M., and Macdonald, A. (2010). Optineurin negatively regulates the induction of IFNbeta in response to RNA virus infection. PLoS pathogens 6, e1000778.
Miggin, S.M., Palsson-McDermott, E., Dunne, A., Jefferies, C., Pinteaux, E., Banahan, K., Murphy, C., Moynagh, P., Yamamoto, M., Akira, S., et al. (2007). NF-kappaB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proceedings of the National Academy of Sciences of the United States of America 104, 3372-3377.
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., and Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular biology of the cell 15, 1101-1111.
Morton, S., Hesson, L., Peggie, M., and Cohen, P. (2008). Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS letters 582, 997-1002.
Rahighi, S., Ikeda, F., Kawasaki, M., Akutsu, M., Suzuki, N., Kato, R., Kensche, T., Uejima, T., Bloor, S., Komander, D., et al. (2009). Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098-1109.
Rezaie, T., Child, A., Hitchings, R., Brice, G., Miller, L., Coca-Prados, M., Heon, E., Krupin, T., Ritch, R., Kreutzer, D., et al. (2002). Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077-1079.
Rogov, V.V., Suzuki, H., Fiskin, E., Wild, P., Kniss, A., Rozenknop, A., Kato, R., Kawasaki, M., McEwan, D.G., Lohr, F., et al. (2013). Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. The Biochemical journal 454, 459-466.
Romanov, J., Walczak, M., Ibiricu, I., Schuchner, S., Ogris, E., Kraft, C., and Martens, S. (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. The EMBO journal 31, 4304-4317.
Schmitz, M.L., Bacher, S., and Dienz, O. (2003). NF-kappaB activation pathways induced by T cell costimulation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 2187-2193.
Schutze, S., Wiegmann, K., Machleidt, T., and Kronke, M. (1995). TNF-induced activation of NF-kappa B. Immunobiology 193, 193-203.
Schwamborn, K., Weil, R., Courtois, G., Whiteside, S.T., and Israel, A. (2000). Phorbol esters and cytokines regulate the expression of the NEMO-related protein, a molecule involved in a NF-kappa B-independent pathway. The Journal of biological chemistry 275, 22780-22789.
Sen, R., and Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716.
Sirohi, K., Chalasani, M.L., Sudhakar, C., Kumari, A., Radha, V., and Swarup, G. (2013). M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy 9, 510-527.
Tamura, T., Yanai, H., Savitsky, D., and Taniguchi, T. (2008). The IRF family transcription factors in immunity and oncogenesis. Annual review of immunology 26, 535-584.
Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., and Randow, F. (2012). Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418.
Tooze, S.A., and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nature cell biology 12, 831-835.
Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233.
Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nature cell biology 9, 1102-1109.
Zhu, G., Wu, C.J., Zhao, Y., and Ashwell, J.D. (2007). Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Current biology : CB 17, 1438-1443.
校內:2019-08-27公開