簡易檢索 / 詳目顯示

研究生: 程浩瑋
Cheng, Hao-Wei
論文名稱: 應用中空扭剪試驗探討反覆剪應變下顆粒性土壤孔隙水壓力激發曲線
Pore Water Pressure Generation Curves of Granular Soils in Cyclic Strain Approach by Hollow Cylinder Testing
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 中空扭剪反覆剪應變法液化試驗孔隙水壓力激發曲線骨架孔隙比
外文關鍵詞: Hollow cylinder apparatus, cyclic strain method, liquefaction, pore pressure generation curve, skeleton void ratio
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內進行土壤液化潛能評估時,多以應力作為其設計依據,但已有多
    位學者指出,液化土層所激發之超額孔隙水壓與剪應變高度相關,且剪應
    變控制試驗與試體微結構(soil fabric)較不相關。本研究應用??中空扭剪系
    統進行反覆剪應變法液化試驗,探討剪應變、剪動次數與超額孔隙水壓力
    之關係。研究以三種砂土進行定振幅剪應變正弦波試驗,利用特定剪動次
    數下,不同剪應變對應激發之超額孔隙水壓比建立孔隙水壓力激發曲線,
    以探討各變因對曲線之影響。研究結果顯示,當相對密度越高時,孔隙水
    壓力較難以激發;而於相同骨架孔隙比(soil skeleton void ratio)下改變細粒
    料含量,曲線並沒有明顯變化,但於低剪應變時,增加細粒料含量會略微
    降低激發之孔隙水壓力外,曲線無明顯變化,但不同砂土於相同細粒料含
    量與骨架孔隙比下,孔隙水壓力激發曲線有不同趨勢。

    When evaluating soil liquefaction potential, stress is often used as its design basis. There are many scholars have pointed out that the excess pore water pressure is highly correlated with shear strain. In this study, the Ko hollow torsional shear system was used to conduct the liquefaction test using the cyclic strain method, and the relationship between the shear strain, the number of cycle and the excess pore water pressure was discussed. Three kinds of sandy soils were used for this test. The pore water pressure generation curve was established by using the ratio of excess pore water pressure at different shear strains level under a specific number of cycle, to explore the influence of various variables on the curve. The research results show that when the relative density is higher, the pore water pressure is more difficult to generate. When changing the fine particle content at the same soil skeleton void ratio, the curve does not change significantly. But at low shear strain, It will slightly reduce the generation of pore water pressure when fine content increase. Different sands have different trends in the pore water pressure generation curves of under the same fines content and skeleton void ratio.

    摘要 I EXTENDED ABSTRACT II 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 1 1-3 研究方法與流程 1 1-4 論文架構 3 第二章 文獻回顧 4 2-1 土壤液化 4 2-3-1 液化種類 4 2-3-2 液化判定準則 4 2-2 土壤液化評估方式 5 2-4-1 反覆剪應力法(Cyclic stress approach) 5 2-4-2 反覆剪應變法(Cyclic strain approach) 8 2-3 孔隙水壓力激發曲線與液化阻抗比影響因子 9 2-5-1 相對密度 9 2-5-2 細粒料含量 10 2-5-3 骨架孔隙比(esk) 11 2-5-4 砂土種類 15 2-4 中空扭剪系統發展 16 2-1-1 Hight et al. (1983) HCA研究 16 2-1-2 Tatsuoka et al. (1986) HCA研究 19 2-5 剪應力與剪應變之計算 21 2-2-1 剪應力計算 21 2-2-2 剪應變計算 22 第三章 試驗儀器 23 3-1 Ko壓密中空扭剪系統硬體架構 23 3-1-1 外部硬體構件 24 3-1-2 伺服馬達 29 3-1-3 電動缸與油壓缸 30 3-1-4 壓力控制系統 31 3-1-5 訊號擷取模組與訊號放大器 32 3-1-6 I/O介面卡 33 3-2 中空扭剪系統控制 34 3-3-1 伺服馬達子系統 34 3-3-2 垂直荷重子系統 37 3-3-3 水平扭剪子系統 38 3-3-4 資料擷取與自動控制LabVIEW程式 40 3-3 傳感器率定 41 3-3-1 荷重元率定 41 3-3-2 扭力計率定 44 3-3-3 壓力傳感器率定 46 3-3-4 位移傳感器率定 47 第四章 試驗流程與系統驗證 51 4-1 試驗材料基本物理性質 51 4-2 試驗流程 53 4-2-1 試體製作與架設 54 4-2-2 試體飽和 55 4-2-3 試體壓密 56 4-2-4 試體剪動 56 4-3 數據處理 56 4-4 系統驗證試驗 58 第五章 試驗結果與分析 60 5-1 試驗規劃 60 5-2 麥寮砂基本物理性質 60 5-3 試驗結果 62 5-3-1 渥太華砂(Ottawa sand) 62 5-3-2 麥寮砂(MLS) 67 5-3-3 混和砂(Mixed sand) 71 5-4 分析與討論 74 5-4-1 相對密度對孔隙水壓激發之影響 75 5-4-2 細粒料含量對孔隙水壓激發之影響 79 5-4-3 不同砂對孔隙水壓激發之影響 90 第六章 結論與建議 92 6-1 結論 92 6-2 建議 92 參考文獻 94

    張嘉偉 (1997) 圓錐貫入試驗在粉砂中之標定,國立交通大學土木工程學系,碩士論文。
    周仕勳 (2014) 以反覆三軸K_o壓縮試驗探討週期性靜水壓升降對飽和顆粒性土壤壓縮特性之影響,國立成功大學土木工程學系,碩士論文。
    陳昱愷 (2018) 應用中空扭剪試驗探討剪應變速率對土壤動態特性之影響,國立成功大學土木工程學系,碩士論文。
    龍麒安 (2019) 以中空扭剪探討近斷層加載下砂土液化行為,國立成功大學土木工程學系,碩士論文。
    戴崇恩 (2020)應用中空扭剪試驗探討液化後顆粒性土壤殘餘強度,國立成功大學土木工程學系,碩士論文。
    Ampadu, S., and Tatsuoka, F. (1993). A Hollow Cylinder Torsional Simple Shear Apparatus Capable of a Wide Range of Shear Strain Measurement. Geotechnical Testing Journal, 16(1), 3-17.
    Chang, W.-J., Rathje, E. M., Stokoe, K. H., II, and Hazirbaba, K. (2007) In Situ Pore Pressure Generation Behavior of Liquefiable Sand. Journal of Geotechnical Geoenvironmental Engineering, 133(8), 921–931.
    Chang, W.-J., Chang, C.-W., & Zeng, J.-K. (2014). Liquefaction Characteristics of Gap-graded Gravelly Soils in K_o Condition. Soil Dynamics and Earthquake Engineering, 56, 74-85.
    Dobry, R. & Swiger, W. F. (1979), Threshold Strain and Cyclic Behavior of Cohesionless Soils. Proceedings, 3rd ASCE/EMDE Specialty Conference, Austin, TX, September 17-19, 521-525.
    Dobry, R., Ladd, R. S., Yokel F. Y., Chung, R. M., & Powell, D. (1982). Prediction of Pore Water Pressure Buildup and Liquefaction of Sands During Earthquakes by the Cyclic Strain Method. National Bureau of Standards Building Science Series 138, 150 pp.
    Dobry, R., (1985) Liquefaction of Soils During Earthquakes. National Research Council (NRC), Committee on Earthquake Engineering, Report No. CETS-EE-001, Washington DC.
    Erten, D., and Maher M. H., Cyclic Undrained Behavior of Silty Sand. Soil Dynamics and Earthquake Engineering, 1995, 14, 115-123
    Hardin, B. O., and Drnevich, V. P. (1972b). Shear Modulus and Damping in Soils: Design Equation and Curve. Journal of Soil Mechanics & Foundations vol. 98, sm6, 630-624.
    Hight, D. W., Gens, A., & Symes, M. J. (1983). The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils. Géotechnique, 33(4), 355-383.
    Hazirbaba, K. (2005). Pore Pressure Generation Characteristics of Sands and Silty Sands: A Strain Approach. Ph.D. dissertation, University of Texas at Austin, Austin, Tex.
    Ishihara, K., & Li, S.-I. (1972). Liquefaction of Saturated Sand in Triaxial Torsion Shear Test. Soils and Foundations, 12(2), 19-39.
    Ishihara, K. (1996). Soil behaviour in earthquake geotechnics
    Iwasaki, T., Tatsuoka, F., & Takagi, Y. (1978). Shear Moduli of Sands under Cyclic Torsional Shear Loading. Soils and Foundations, 18(1), 39-56
    Iwasaki, T., Arakawa, T., & Tokida, K.-I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58
    Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, Inc., 409-417.
    Kuerbis, R. H., Negussey, D., & Vaid, Y. P. (1988). Effect of Gradation and Fines Content on the Undrained Response of Sand, Geotechnical Special Publication No. 21, ASCE, 330-345.
    Lade, P. V., Liggio, C. D., Jr., & Yamamuro, J. A. (1998). Effect of Non-Plastic Fines on Minimum and Maximum Void Ratio of Sand. Geotechnical Testing Journal, GTJODJ, vol. 21, no. 4, 336-347
    National Instruments Ltd. (2001). PID Control Toolset User Manual.
    Poulos, S., Castro, G., & France, J. (1985). Liquefaction Evaluation Procedure. Journal of Geotechnical Engineering, 111, 772-792.
    Polito, C. P., & Martin, J. R. (2001). Effects of Non-Plastic Fines on the Liquefaction Resistance of Sands. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(5), 408-415.
    Saada, A. S. (1988). Hollow Cylinder Torsional Devices: Their Advantage and Limitations, Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, R. Donaghe, R. Chaney, M. Silver, Eds., American Society for Testing Materials, Philadelphia, 766-795.
    Seed, H. B., and Idriss, I.M. (1970). A Simplified Procedure for Evaluating Soil Liquefaction Potential. Report EERC 70-9, Earthquake Engineering Research Center, University of California, Berkeley.
    Singh, S., (1996). Liquefaction Characteristics of Silts. Geotechnical and Geological Engineering, 1996, 14, 1-19.
    Tatsuoka, F., Sonoda, S., Hara, K., Fukushima, S., & Pradhan, T. B. S. (1986). Failure and Deformation of Sand in Torsional Shear. Soils and Foundations, 26(4), 79-97.
    Vucetic, M., (1994). Cyclic Threshold Shear Strains in Soils. Journal of Geotechnical Engrineering, ASCE, 120(12), 2208-2228.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE