簡易檢索 / 詳目顯示

研究生: 洪飛義
Hung, Fei-Yi
論文名稱: 矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響
The Effects of Si Content and Matrix Structure on the Particle Erosion Behavior of Spheroidal Graphite Cast Irons
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 176
中文關鍵詞: 球墨鑄鐵沖蝕磨耗
外文關鍵詞: erosion, spheroidal graphite cast iron
相關次數: 點閱:98下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   球墨鑄鐵廣泛應用於許多顆粒沖蝕磨耗環境,其化學組成與基地組織對沖蝕磨耗行為的影響很大。本研究之試料具有2.1 wt.%、2.8 wt.%及4.2 wt.% 三種不同矽含量(碳含量固定約為3.5 wt.%左右),基地組織包含鑄態、肥粒體基、波來體基以及上變韌體基。重點在探討上述矽含量及基地組織要因對本材料顆粒沖蝕磨耗行為的影響,而沖蝕顆粒性質對沖蝕磨耗之效應亦一併檢討。沖蝕試驗選用之沖蝕顆粒為粒徑約295mm之SiO2或約275mm之Al2O3; SiO2 顆粒的沖蝕速度約為66 m sec-1,Al2O3 顆粒則約為 73 m sec-1。
      實驗結果顯示,鑄態試料之矽含量降低會增加波來體面積率,並相對減少肥粒體面積率,因而增進沖蝕磨耗阻抗。單相肥粒體基試料隨著矽含量的增加,其沖蝕磨阻抗因固溶硬化效應較顯著而增大。此外,矽含量固定時,波來體基試料的低角度沖蝕磨耗阻抗隨著雪明碳體層狀間距減小而提升,高角度沖蝕磨耗阻抗則隨著雪明碳體層狀間距減小而明顯降低。鑄態與肥粒體基試料最大沖蝕磨耗率的沖蝕角度約在300附近,而波來體基試料則隨著層狀間距減少使得最大沖蝕磨耗率之沖蝕角度由300遷移至450附近。
      根據2.1 wt.% Si及2.8 wt.% Si之上變韌體基沃斯回火球墨鑄鐵的實驗結果,第一階段熱處理之沃斯回火球墨鑄鐵隨著沃斯回火時間縮短,基地中的麻田散體量增加,除了降低沖蝕磨耗阻抗之外,並造成沖蝕磨耗率對沖蝕角度之關係曲線具有雙峰型態。第二階段熱處理之上變韌體基沃斯回火球墨鑄鐵隨著沃斯回火時間增加,基地中的殘留沃斯田體含量減少及促成碳化物生成,因而降低材料的耐沖蝕磨耗性,亦使其單峰型態之沖蝕磨耗率曲線的最大沖蝕磨耗率所對應之沖蝕角度往高角度側偏移。至於高矽含量(4.2 wt.% Si)上變韌體基沃斯回火球墨鑄鐵因固溶效應顯著、基地中碳化物生成,以及殘留沃斯田體量減少等要因,導致試料的耐沖蝕磨耗阻抗降低,並造成該試料之沖蝕磨耗率曲線由單峰型態轉變成雙峰型態。此外,上變韌體基沃斯回火球墨鑄鐵試料經沖蝕磨耗後其殘留沃斯田體相、高碳肥粒體相與其他碳化物均會進一步相變態,而主要生成相為e-碳化物。
      在相同磨耗條件下,Al2O3的沖蝕移除能力大於SiO2;上變韌體基沃斯回火球墨鑄鐵的耐沖蝕磨耗阻抗優於波來體基試料。其中,上變韌體基沃斯回火球墨鑄鐵經適當熱處理使組織中含較多量之殘留沃斯田體相可提升耐沖蝕磨耗阻抗。降低波來體基試料矽含量,並藉由熱處理增大雪明碳鐵層狀間距能有效改善其耐沖蝕磨耗性能。

      Spheroidal graphite cast irons have been used in many environments involving particle erosion. Both of the silicon content and the matrix phase resulted in differentia of erosion behavior in spheroidal graphite cast irons. The study had investigated the particle-erosion behavior of as-cast, ferritic, pearlitic and upper bainitic specimens. The carbon content of each specimen was controlled at approximately 3.5 wt.% and changed the three kinds different silicon content (2.1 wt.% Si, 2.8 wt.% Si and 4.2 wt.% Si) and the heat treatment conditions. The SiO2 particle of 295mm mean diameter and the Al2O3 particle of 275mm mean diameter were selected as the erodent. The purpose of this study should reveal the erosion behavior of the silicon content and the matrix phase in spheroidal graphite cast irons.
      The results indicate that a decrease in the silicon content promotes an increase in the vol.% pearlite phase and a decrease in the vol.% ferrite phase, thereby improving the erosion resistance. For the full ferritic specimens, an increase in the silicon content significantly hardens the ferrite phase and decreases the erosion rate. Furthermore, for the full pearlite specimens with the same silicon content, increasing the interlamellar spacing leads to an increased erosion rate in the oblique impact range, but results in a decreased erosion rate at a larger impact degree. The impact angle at which the maximum erosion rate occurs on the erosion curve is approximately 300 for the as-cast and ferritic specimens. However, the impact angle tends to shift towards a higher end (300®450) as the interlamellar spacing small for the PDI specimens.
      For the 2.1 wt.% Si and 2.8 wt.% Si specimens, a decrease in austempering duration promotes an increase in the martensite phase, thereby debasing the erosion resistance in the Stage I ADI. Meanwhile, a double peak curve formed by the erosion rate data can be found. In the Stage II ADI, the retained austenite tends to decrease in amount and the resultant carbides precipitate in the matrix as the austempering duration prolonging. Consequently, the erosion resistance decrease and the impact angle of maximum erosion rate shifts to the side of the higher angle.
      The effect of solid solution is obvious in the ADI with higher silicon content (up to about 4.2 weight %). The formation of carbides and a decrease in the retained austenite phase as a result of the prolonged austempering duration that turns the curve of erosion rate from single peak into double peak and debase the erosion resistance. The austentite phase and unstable high carbon ferrite that transform into e-carbides as induced after the erosion.
      ADI possesses better erosion resistance than PDI under identical comparison conditions. The PDI specimens with lower silicon content, higher l value and higher cementite fraction show better erosion resistance than other non-ADI specimens. The ADI specimens with higher retained austenite contents through the heat treatment condition possess better erosion resistance.

    中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………III 總目錄……………………………………………………………………………VI 表目錄……………………………………………………………………………VIII 圖目錄……………………………………………………………………………IX 第一章 論文概要…………………………………………………………………1 第二章 文獻回顧…………………………………………………………………3   2-1 前言………………………………………………………………………3   2-2 沖蝕磨耗行為與機構之相關研究………………………………………3     2-2-1 沖蝕磨耗……………………………………………………………3     2-2-2 顆粒沖蝕條件對沖蝕磨耗之影響…………………………………4     2-2-3 材料機械性質與沖蝕磨耗阻抗之關係……………………………6   2-3 工業常用球墨鑄鐵………………………………………………………8   2-4 沃斯回火球墨鑄鐵………………………………………………………9   2-5 本研究之目的……………………………………………………………12 第三章 工業常用球狀石墨鑄鐵之顆粒沖蝕磨耗特性………………………16   3-1 前言………………………………………………………………………16   3-2 實驗方法…………………………………………………………………16   3-3 鑄態球墨鑄鐵沖蝕磨耗之矽含量效應…………………………………19     3-3-1 矽含量對鑄態試料微觀組織與機械性質之影響………………19     3-3-2 鑄態試料之沖蝕磨耗……………………………………………19   3-4 肥粒體基球墨鑄鐵矽固溶強化效應對沖蝕磨耗的影響………………22     3-4-1 肥粒體基球墨鑄鐵的顯微組織與機械性質……………………22     3-4-2 肥粒體基試料之沖蝕磨耗………………………………………22   3-5 波來體基球墨鑄鐵沖蝕磨耗行為之矽含量及雪明碳體層狀間距效應26     3-5-1 波來體基球墨鑄鐵基本特性與拉伸性質………………………26     3-5-2 沖蝕磨耗率之雪明碳體層狀組織變化效應……………………27     3-5-3 波來體基球墨鑄鐵沖蝕磨耗行為之矽含量效應………………29     3-5-4 波來體基球墨鑄鐵之沖蝕磨耗機構……………………………31   3-6 結論………………………………………………………………………33 第四章 沃斯回火球墨鑄鐵之顆粒沖蝕磨耗特性……………………………66   4-1 前言………………………………………………………………………66   4-2 實驗方法…………………………………………………………………66   4-3 ADI與PDI 試料之沖蝕磨耗比較………………………………………69     4-3-1 ADI 與PDI 試料的顯微結構、拉伸性質及沖蝕磨耗率之比較69     4-3-2 ADI 與PDI試料之沖蝕磨耗特徵…………………………………70     4-3-3 ADI與PDI 試料之耐沖蝕磨耗性…………………………………72   4-4 沃斯回火時間對上變韌體基ADI(2.8 wt.% Si)沖蝕磨耗的影響………74     4-4-1 沃斯回火時間對ADI試料的微觀組織及拉伸性質之影響……74     4-4-2 ADI (2.8 wt.% Si)試料沖蝕磨耗率分析及磨耗特徵之觀察……75     4-4-3 ADI (2.8 wt.% Si)組成相之沖蝕磨耗特性與沖蝕相變態………78   4-5 上變韌體基球墨鑄鐵沖蝕磨耗特性之矽含量效應……………………79     4-5-1 ADI的顯微組織及基本特性之矽含量效應……………………79     4-5-2 Stage II ADI (2.1 wt.% Si; 2.8 wt.% Si) 的沖蝕磨耗率與沖蝕機構80     4-5-3 Stage I ADI (2.1 wt.% Si; 2.8 wt.% Si) 及Stage II ADI (4.2 wt.% Si)        試料的沖蝕磨耗特性…………………………………………81     4-5-4 ADI 試料之沖蝕機構……………………………………………83   4-6 ADI之沖蝕誘發相變態…………………………………………………86   4-7 結論………………………………………………………………………88 第五章 球墨鑄鐵沖蝕磨耗率曲線變化之影響機制探討……………………136   5-1 前言……………………………………………………………………136   5-2 球墨鑄鐵沖蝕磨耗率曲線型態變化之力學性要因…………………136     5-2-1 基地有效受力面積變化與球墨分佈之效應……………………136     5-2-2 基地變形阻抗提升之效應………………………………………138     5-2-3 沖蝕角度變化所導致之材料去除行為改變效應………………139     5-2-4 沖蝕顆粒強度所導致之沖蝕磨耗率改變效應…………………142   5-3 球墨鑄鐵沖蝕磨耗率曲線型態變化之冶金學性要因………………143     5-3-1 合金元素添加所導致之基地微觀組織改變……………………143     5-3-2 ADI試料之基地微觀組織改變對沖蝕磨耗行為之效應檢討…144     5-3-3 ADI試料之回火析出相及麻田散體相之組織變化效應………147   5-4 結論……………………………………………………………………151 第六章 總結論…………………………………………………………………166 第七章 參考文獻………………………………………………………………168 誌謝………………………………………………………………………………175 表目錄 表3-1 球墨鑄鐵的化學成份表,wt. % (以Si含量為標號)。…34 表3-2 波來體基試料之熱處理條件表。………………………… 34 表3-3 鑄態試料之組織定量表。………………………………… 34 表3-4 鑄態試料之拉伸機械性質、硬度值、波來體相面積率(%) 與沖蝕表面之粗度Ra (mm) 表。………………………… 35 表3-5 肥粒體基試料之拉伸機械性質、硬度值、肥粒體晶粒平均粒徑與沖蝕表面之粗度Ra (mm)表。 ………………… 35 表3-6 波來體基試料之機械性質與硬度值。…………………… 35 表4-1 試料沃斯回火時間表(沃斯回火溫度:420℃)。………… 90 表4-2 沖蝕顆粒性質表。………………………………………… 90 表4-3 試料的組織定量表。……………………………………… 90 表4-4 ADI與PDI試料之沖蝕磨耗表面中心線平均粗Ra (mm) 表(沖蝕角度:300,450,900)。………………………… 91 表4-5 試料的機械性質與組織定量數據(2.8 Si wt.%)………… 91 表4-6 試料組織特徵定量表(沃斯回火溫度:420℃)。………… 92 圖目錄 圖2-1 顆粒衝擊方向與材料表面間之關係圖。………………… 13 圖2-2 沖蝕角度與沖蝕磨耗率關係圖。………………………… 14 圖2-3 沃斯回火處理及產生之顯微組織關係圖………………… 15 圖3-1 本章研究之流程圖。……………………………………… 36 圖3-2 圓形拉伸試棒尺寸圖。…………………………………… 37 圖3-3 沖蝕試驗裝置示意圖 (A: 高壓空氣、 B: 沖蝕顆粒、 C: 噴嘴、 D: 試片、 E: 試片座、 P:壓力閥, q: 沖蝕角度)。……………………………………………………… 38 圖3-4 沖蝕顆粒SiO2的SEM 照片。…………………………… 39 圖3-5 球墨鑄鐵試料(碳含量3.5 wt.%;矽含量2.8 wt.%)磨耗重量損失與沖蝕顆粒重量之關係數據(肥粒體基,900沖蝕)。……………………………………………………… 40 圖3-6 鑄態試料之SEM照片:(a) A-2.1Si、(b) A-2.8Si,(c) A-4.2Si。……………………………………………… 41 圖3-7 不同Si含量鑄態試料的沖蝕磨耗率與沖蝕角度關係圖。……………………………………………………… 42 圖3-8 鑄態試料沖蝕磨耗表面特徵:(a) A-2.1Si, 300沖蝕,(b)A-2.8Si, 900 沖蝕。…………………………………… 43 圖3-9 鑄態試料之沖蝕磨耗表面特徵:(a) A-4.2Si, 300沖蝕A-4.2Si, 900沖蝕。………………………………… 44 圖3-10 鑄態試料之沖蝕磨耗次表面特徵:(a) A-2.1Si, 300沖蝕,(b) A-2.8Si, 900沖蝕。…………………………… 45 圖3-11 鑄態試料之沖蝕磨耗次表面特徵:(a) A-4.2Si, 300沖蝕,(b) A-4.2Si, 900沖蝕。……………………………… 46 圖3-12 A-2.1Si, 300沖蝕的單一顆粒沖蝕磨耗表面特徵。……… 47 圖3-13 肥粒體基試料之顯微組織:(a) F-2.1Si、(b) F-2.8Si,(c) F-4.2Si。…………………………………………… 48 圖3-14 不同矽含量肥粒體基試料之沖蝕磨耗率與沖蝕角度的關係圖。……………………………………………………… 49 圖3-15 沖蝕磨耗表面特徵:(a) F-2.8Si, 300沖蝕,(b) F-2.8Si, 900沖蝕。……………………………………………… 50 圖3-16 沖蝕磨耗次表面特徵:(a) F-2.1Si, 300沖蝕,(b) F-2.8Si, 900沖蝕。………………………………………… 51 圖3-17 單一顆粒沖蝕磨耗表面:(a) F-4.2Si, 300沖蝕、 (b)2.1Si, 300沖蝕,(c) F-2.1Si, 900沖蝕。………………… 52 圖3-18 波來體基試料之顯微組織:(a) 2.1Si-oil(870℃)、(b)2.1Si-air(870℃)、(c) 2.1Si-air(930℃)、(d) 2.8Si-air(930℃)、 (e) 4.2Si-air(930℃),(f) 4.2Si-oil(930℃)。(後頁續)……………………………………………………53 圖3-18 波來體基試料之顯微組織:(a) 2.1Si-oil(870℃)、(b)2.1Si-air(870℃)、(c) 2.1Si-air(930℃)、(d) 2.8Si-air(930℃)、 (e) 4.2Si-air(930℃),(f) 4.2Si-oil(930℃)。(續前頁)…………………………………………………… 54 圖3-19 不同層狀間距之波來體基(2.1 wt.% Si)試料的沖蝕磨耗率圖。……………………………………………………… 55 圖3-20 不同層狀間距之波來體基(4.2 wt.%Si)試料的沖蝕磨耗率圖。…………………………………………………… 56 圖3-21 沖蝕磨耗表面及次表面特徵:(a) 2.1Si-oil(870℃),450、(b) 2.1Si-air(870℃), 450、(c) 2.1Si-oil(870℃),900、(d) 4.2Si -oil(930℃), 450、(e) 4.2Si-oil(930℃),900,(f) 4.2Si-oil(930℃), 450 (ED: erosion direction)。(後頁續)……………………………………………………57 圖3-21 沖蝕磨耗表面及次表面特徵:(a) 2.1Si-oil(870℃),450、(b) 2.1Si-air(870℃), 450、(c) 2.1Si-oil(870℃),900、(d) 4.2Si -oil(930℃), 450、(e) 4.2Si-oil(930℃),900,(f) 4.2Si-oil(930℃), 450 (ED: erosion direction)。(續前頁)…………………………………………………… 58 圖3-22 不同層狀間距之波來體基(2.1wt.%Si, 450沖蝕)試料的沖蝕磨耗裂縫與硬度關係圖。…………………………… 59 圖3-23 波來體基試料(2.1 wt.% Si)之雪明碳體相 X-ray 繞射圖: 2.1Si-oil(870℃) l=0.19mm、2.1Si-air(870℃) l=0.20mm,2.1Si-air(930℃) l=0.25mm。….………… 60 圖3-24 波來體基試料之雪明碳體相 X-ray 繞射圖: 2.1Si-air(930℃),4.2Si-air(930℃)。…………………………………… 61 圖3-25 不同矽含量於930℃下強制空冷處理的波來體基試料之沖蝕磨耗率圖。……………………………………… 62 圖3-26 波來體試料之沖蝕磨耗表面特徵:(a) 2.1Si-air(930℃), 300、(b) 2.1Si-air(930℃), 900、(c) 4.2Si-air(930℃), 300,(d) 4.2Si-air(930℃), 900。(後頁續)……………… 63 圖3-27 波來體試料之沖蝕磨耗次表面特徵:(a) 2.1Si-air(930℃), 300、(b) 2.1Si-air(930℃), 900、(c) 4.2Si-air(930℃) , 450,(d) 4.2Si-air(930℃), 900。(續前頁)………………… 64 圖3-28 波來體試料之單一顆粒沖蝕磨耗表面:(a) 2.1Si-air(930℃), 300、(b) 2.8Si-air(930℃), 300、(c) 4.2Si-air(930℃), 400,(d) 4.2Si-air(930℃), 900。……………… 65 圖4-1 本章研究之流程圖。……………………………………… 93 圖4-2 Al2O3顆粒沖蝕顆粒之形貌。…………………………… 94 圖4-3 上變韌體基沃斯回火球墨鑄鐵Stage I試料(碳含量3.5 wt.%;矽含量2.8 wt.%)磨耗重量損失與沖蝕顆粒重量之關係數據(沃斯回火條件:420℃,5分鐘,900沖蝕)。… 95 圖4-4 上變韌體基沃斯回火球墨鑄鐵Stage II試料(碳含量3.5 wt%;矽含量2.8 wt%)磨耗重量損失與沖蝕顆粒重量之關係數據(沃斯回火條件:420℃,0.5小時,900沖蝕)。… 96 圖4-5 ADI試料的X-Ray (碳含量3.5 wt.%;矽含量2.8 wt.%,沃斯回火條件:420℃,0.5小時)。…………………… 97 圖4-6 ADI試料的微觀組織 (碳含量3.5 wt.%;矽含量2.8 wt.%,沃斯回火條件:420℃,0.5小時)。………………98 圖4-7 ADI試料(碳含量3.5 wt.%;矽含量2.8 wt.%,沃斯回火條件:420℃,0.5小時)及PDI試料(碳含量3.5 wt.%;矽含量2.1 wt.%,熱處理條件:930℃,1小時,強制空冷)的拉伸機械性質。……………………………………… 99 圖4-8 ADI(2.8Si)及PDI(2.1Si)試料的沖蝕磨耗率。…………… 100 圖4-9 試料沖蝕磨耗表面特徵:(a) PDI, 300-Al2O2, (b) PDI, 900-Al2O3 (ED:沖蝕方向。碳含量3.5 wt.%;矽含量2.1 wt.%。熱處理條件:930℃,1小時,強制空冷)。…… 101 圖4-10 試料沖蝕磨耗表面特徵:(a) ADI, 300-SiO2、(b) ADI, 300-Al2O3、(c) ADI, 900-SiO2, (d) ADI, 900-Al2O3 (ED:沖蝕方向。碳含量3.5 wt.%;矽含量2.8 wt.%,沃斯回火條件:420℃,0.5小時)。….………………………… 102 圖4-11 PDI試料之磨耗次表面的觀察:(a) PDI, 450- Al2O3,(b) PDI, 900-Al2O3 (ED:沖蝕方向)。………………………… 103 圖4-12 ADI (2.8Si) 試料磨耗次表面的觀察:(a) ADI, 300-SiO2、(b) ADI, 300- Al2O3,(c) ADI, 900-Al2O3 (ED:沖蝕方向)。………………………………………………………… 104 圖4-13 ADI試料(2.8Si-0.5hr)的穿透式電子顯微鏡:(a) 明視野照片、(b) 暗視野照片,(c) 圖(a)中沃斯田體的SADP。…………………………………………………… 105 圖4-14 沖蝕顆粒經沖蝕後的型貌:(a) SiO2 顆粒,(b) Al2O3顆粒。……………………………………………………… 106 圖4-15 單一顆粒沖蝕磨耗表面特徵:(a) ADI, 450-Al2O3、(b) PDI, 450-Al2O3、(c) PDI, 900-Al2O3, (d) ADI, 900-Al2O3 (ED:沖蝕方向)。………………………………………………… 107 圖4-16 ADI 試料的微觀組織: (a) UB5min、(b) UB0.5hr,(c)UB3hr。…………………………………………………… 108 圖4-17 不同沃斯回火時間之ADI(2.8Si)的沖蝕磨耗率圖。…… 109 圖4-18 ADI 試料(2.8 wt.% Si)之磨耗表面觀察: (a) UB5min, 300,(b) UB5min, 900。………………………………… 110 圖4-19 ADI 試料(2.8 wt.% Si)之磨耗次表面觀察: (a) UB5min, 300、(b) UB5min, 750,(c) UB5min, 900。……………… 111 圖4-20 ADI 試料(2.8 wt.% Si)之磨耗表面觀察: (a) UB0.5hr, 300, (b) UB0.5hr, 900。………………………………… 112 圖4-21 ADI 試料(2.8 wt.% Si)之磨耗次表面觀察: (a) UB0.5hr, 300,(b) UB1hr, 900。…………………………………… 113 圖4-22 ADI 試料(2.8 wt.% Si)之磨耗表面觀察: (a) UB3hr, 450,(b) UB3hr, 900。…………………………………… 114 圖4-23 ADI 試料(2.8 wt.% Si)之磨耗次表面觀察: (a) UB3hr, 300,(b) UB3hr, 900。…………………………………… 115 圖4-24 UB5min試料(2.8 wt.% Si)的TEM: (a) 明視野、(b) 暗視野,(c) 麻田散體在(0110)的擇區繞射圖形。…………… 116 圖4-25 Stage II (2.8 wt.% Si, 0.5hr) 試料的TEM: (a) 明視野、(b) 暗視野,(c) 變韌肥粒體在(011)的擇區繞射圖形。… 117 圖4-26 ADI 試料(2.8 wt.% Si)之X-ray繞射圖: (a) 沖蝕磨耗前, (b) 沖蝕磨耗後。………………………………………… 118 圖4-27 ADI 試料(2.8 wt.% Si)之沖蝕前及沖蝕後的殘留沃斯田體體積率變化圖。………………………………………… 119 圖4-28 ADI試料微觀組織組織: (a) 2.8Si-5min、(b) 2.8Si-0.5hr ; 2.8Si-3hr試料的TEM :(c) 明視野、(d) 暗視野,(e) 碳化物在的SAED;(f) 4.2Si-0.5hr,(g) 4.2Si-3hr (後頁續)。……………………………………… 120 圖4-28 ADI試料微觀組織組織: (a) 2.8Si-5min、(b) 2.8Si-0.5hr ; 2.8Si-3hr試料的TEM :(c) 明視野、(d) 暗視野,(e) 碳化物的SAED;(f) 4.2Si-0.5hr,(g) 4.2Si-3hr (續前頁)。………………………………………121 圖4-29 沖蝕磨耗率圖:(a) 2.1Si-ADI,(b) 2.8Si-ADI。………122 圖4-30 2.1Si試料沖蝕磨耗特徵:(a) 2.1Si-1hr試料沖蝕磨耗次表面, 450,(b) 2.1Si-1hr試料沖蝕磨耗次表面, 900。… 123 圖4-31 2.1Si試料沖蝕磨耗特徵:(a) 2.1Si-0.5hr試料300沖蝕磨耗表面,(b) 2.1Si-1hr試料300沖蝕磨耗表面。…… 124 圖4-32 沖蝕磨耗率圖:(a) 2.1Si-ADI,(b) 2.8Si-ADI。……… 125 圖4-33 4.2Si-ADI沖蝕磨耗率圖。……………………………… 126 圖4-34 4.2Si-3hr試料沖蝕磨耗特徵:(a) 沖蝕磨耗表面, 300, (b) 沖蝕磨耗表面, 900。………………………………… 127 圖4-35 4.2Si-3hr試料沖蝕磨耗特徵:(a) 沖蝕磨耗次表面,300、(b) 沖蝕磨耗次表面,600,(c) 沖蝕磨耗次表面,900。………………………………………………………128 圖4-36 ADI試料(2.8Si)之單一顆粒沖蝕磨耗特徵:(a) UB5min, 300,(b) UB5min, 900。…………………………………129 圖4-37 ADI試料(2.8Si)之單一顆粒沖蝕磨耗特徵:(a) UB0.5hr, 300,(b) UB3hr, 300。…………………………………… 130 圖4-38 UB0.5hr試料(2.8Si)沖蝕後的TEM:(a) 明視野、(b) 暗視野,(c)碳化物的擇區繞射圖形。……………………… 131 圖4-39 沃斯回火24hr試料(2.8Si)之沖蝕前與900沖蝕後之 X-ray 繞射圖。…………………………………………… 132 圖4-40 UB24hr試料(2.8Si)的XPS:(a) 沖蝕前,(b) 沖蝕後。…… 133 圖4-41 UB24hr試料(2.8Si)沖蝕後的TEM:(a) 明視野、(b) 暗視野,(c)變韌肥粒體相的擇區繞射圖形。…………… 134 圖4-42 UB24hr試料(2.8Si)的EDS:(a) 沖蝕前,(b) 沖蝕後。… 135 圖5-1 沖蝕磨耗率圖(實線:鋁砂,虛線:矽砂)。…………… 154 圖5-2 相同峰值角度的單峰沖蝕磨耗曲線圖(肥粒體基試料)。…155 圖5-3 單峰與雙峰沖蝕磨耗曲線之磨耗機構分佈圖。………… 156 圖5-4 不同沖蝕角度下之沖蝕磨耗機構示意圖。……………… 157 圖5-5 相同峰值角度的單峰沖蝕磨耗曲線圖(鑄態試料)……… 158 圖5-6 鑄態試料沖蝕磨耗次表面示意圖。……………………… 159 圖5-7 球墨鑄鐵的沖蝕磨耗率比較圖。………………………… 160 圖5-8 相異峰值角度的單峰沖蝕磨耗曲線圖。………………… 161 圖5-9 Stage II初期ADI試料之沖蝕磨耗率圖。……………… 162 圖5-10 Stage II 末期ADI試料之沖蝕磨耗率圖。…………… 163 圖5-11 Stage I及Stage II 初期ADI試料之沖蝕磨耗率圖。…… 164 圖5-12 高矽含量(4.2Si)Stage II ADI試料之沖蝕磨耗率圖。……165

    1. K. Shimizu, T. Noguchi, T. Kamada and H. Takasaki, “Progress of Erosive Wear in Spheroidal Graphite Cast Iron”, Wear, Vol.198, 1996, pp.150-155.

    2. I. Finnie, “ Erosion of Surfaces by Solid Particles”, Wear, Vol.3, 1960, pp.87-95.

    3. J. P. A. Bitter, “A Study of Erosion Phenomena Part I”, Wear, Vol.6, 1963, pp.5-12.

    4. Y. I. Oka, H. Ohnogi, T. Hosokawa, and M. Matsumura, “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact”, Wear, 203-204, 1997, pp.573-579.

    5. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, Treatise on Materials Science and Technology, 13th ed., D. Scott, Academic Press, New York, 1979, pp.287-319.

    6. I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles”, J. Materials, Vol.2, 1967, pp.682-700.

    7. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice-Hall, Englewood Cliffs, New Jersey, 1988, pp.209-287.

    8. K. H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier, Amsterdam, 1987, 1st ed., pp.531-553.

    9. 劉中偉,片狀石墨鑄鐵與鋁-矽系合金之矽砂沖蝕磨耗特性研究,國立成功大學材料科學及工程研究所博士論文,民國87年。

    10. W. S. Dai, L. H. Chen and T. S. Lui, “A study on SiO2 ParticleErosion of Flake Graphite and Spheroidal Graphite Cast Irons”, Wear, Vol.239, 2000, pp.143-152.

    11. K. Shimizu, T. Noguchi, T. Yamaguchi and T. Kamada, “Basic Study on Erosive Wear of Ductile Iron”, AFS Trans., Vol.102, 1994, pp.285-289.

    12. K. Shimizu, T. Noguchi and S. Doi, “Basic Study on the Erosive Wear of Austempered Ductile Iron”, AFS Trans., Vol.101, 1994, pp.225-229.

    13. Y. Osafune and Y. Tanaka, “Self-hardening Behavior by Water and Sand-erosion Wear on Austempered Spheroidal Graphite Cast Iron”, J. Japan Foundry Engr. Soc. Vol.73(2), 2001, pp.105-110.

    14. 許益誌,沃斯回火熱處理與球墨分佈對沃斯回火鑄鐵沖蝕磨耗影響之探討,國立成功大學材料科學及工程研究所碩士論文,民國82年。

    15. 戴文雄,石磨鑄鐵的電漿電弧表面重熔改質及矽砂沖蝕磨耗研究,國立成功大學材料科學及工程研究所博論文,民國89年。

    16. 洪飛義、陳立輝,呂傳盛, “沃斯回火球墨鑄鐵沖蝕磨耗特性研究”,鑄造年會論文集,民國89年,第189-194頁。

    17. J. H. Neilson and A. Gilchrist, “Erosion by a Stream of Solid Particle”, Wear, Vol.11, 1968, pp.111-122.

    18. A. V. Levy, “ The Platelet Mechanism of Erosion of Ductile Metals”, Wear, Vol.108, 1986, pp.1-21.

    19. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, Vol.177, 1994, pp.185-193.

    20. D. G. Rickerby, “Correlation of Erosion with Mechanical Properties in Metals”, Wear, Vol.84, 1983, pp.393-395.

    21. K. P. Balan, A. V. Reddy, V. Joshi and G. Sundararajan, “The Influence of Microstructure on the Erosion Behavior of Cast Irons”, Wear, Vol.145, 1991, pp.283-296.

    22. M. Liebhard and A. V. Levy, “The Effect of Erodent Particle Characteristics on the Erosion of Metals”, Wear, Vol.151, 1991, pp.381-390.

    23. I. M. Hutchings, “Prediction of the Resistance of Metals to Erosion by Solid Particles”, Wear, Vol.35, 1975, pp.371-374.

    24. P. J. Slikkerveer, P. C. P. Bouten, F. H. in’t Veld and H. Scholten, “Erosion and Damage by Sharp Particles”, Wear, Vol.217, 1998, pp.237-250.

    25. W. F. Adler, “Analysis of Particulate Erosion”, Wear, Vol.37, 1976, pp.345-352.

    26. S. Bahadur and R. Badruddin, “Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion”, Wear, Vol.138, 1990, pp.189-208.

    27. L. P. McCabe, G. A. Sargent and H. Conrad, “Effect of Mirostructure on the Erosion of Steel by Solid Particles”, Wear, Vol.105, 1985, pp.257-277.

    28. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, Vol.177, 1994, pp.185-193.

    29. G. Sundararajan, “The Solid Particle Erosion of Metallic Materials: The Rationalization of the Influence of Material Variables”, Wear, 186-187, 1995, pp.129-138.

    30. S. Lathabai, M. Ottmuller and I. Fernsandez, “Solid Particle Erosion Behavior of Thermal Sprayed Ceramic, Metallic and Ploymer Coatings”, Wear, Vol.221, 1998, pp.93-108.

    31. G. Sundararajan, “The Depth of Plastic Deformation Beneath Eroded Surfaces-The Infuence of Impact Angle and Velocity, Particle Shape and Material Properties”, Wear of Materials-1991, ASME, 1991, pp.111-122.

    32. I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles”, Vol.2, 1967, pp.682-700.

    33. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, in Treatise on Materials Science and Technology, Vol.13, ed., D. Scott, Academic Press, New York, 1979, pp.287-319.

    34. W. H. Jennings, W. J. Head and C. R. Manning, Jr., “A Mechanistic Model for the Prediction of Ductile Erosion”, Wear, Vol.49, 1976, pp.93-112.

    35. I. Finnie, G. R. Stevick and J. R. Ridgely, “The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles”, Wear, Vol.152, 1992, pp.91-99.

    36. R. G. Wellman and C. Allen, “The Effects of Angle of Impact and Matetial Properties on the Erosion Rates of Ceramics”, Wear, Vol.186-187, 1995, pp.117-122.

    37. J. L. Routbort, R. O. Scattergood and A. P. L. Turner, “The Erosion of Reaction-Bonded SiC”, Wear, Vol.59, 1980, pp.363-375.

    38. D. Chen, M. Sarumi, S.T. S. Al-Hassani, S. Gan, and Z. Yin, “A Model for Erosion at Normal Impact”, Wear, Vol.205, 1997, pp.32-39.

    39. A. V. Levy and B. Wang, “Erosion of Hard Material Coating Systems”, Wear, Vol.121, 1988, pp.325-346.

    40. W. F. Adler, “Analytical Modeling of Multiple Particle Impacts on Brittle Materials”, Wear, 37, 1976, pp.353-364.

    41. R. G. Wellman and C. Allen, “The Effect of Angle of Impact and Material Properties on the Erosion Rates of Ceramics”, Wear, 186-187, 1995, pp.117-125.

    42. L. K. Hien and P. G. Shewmon, “Effects of Hardness on the Solid Particle Erosion Mechanisms in AISI 1060 Steel”, Wear, Vol.89, 1983, pp.291-302.

    43. A. Magnee, Generalized Law of Erosion: “Application to Various Alloys and Intermetallics”, Wear, Vol.181-183, 1995, pp.500-510.

    44. W. S. Dai, L. H. Chen and T. S. Lui, “ SiO2 Particle Erosion of Spheroidal Graphite Cast Iron after Surface Remelting by the Plasma Transferred Arc Process”, Wear, Vol.248, 2001, pp.201-210.

    45. D. F. Wang and Z. Y. Mao, “A Study for Erosion of Si3N4 Ceramics by Impact of Solid Particles”, Wear, Vol.199, 1996, pp.283-286.

    46. T. N. Rouns and K. B. Rundman, “On the Effect of Molybdenum on the Kinetics of Tempering Ductile Cast Irons” AFS Trans., 1983, pp.25-36.

    47. I. Finnie and D. H. McFadden, “On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence”, Wear, Vol.48, 1978, pp.181-190.

    48. A. Misra and I. Finnie, “ On the Size Effect in Abrasive and Erosive Wear”, Wear, Vol.65, 1981, 359-373.

    49. A. Levy, M. Aghazadeh and G. Hickey, “The Effect of Test Variables on the Platelet Mechanism of Erosion”, Wear, Vol.108, 1986, pp.23-41.

    50. R. Bellman, Jr., and A. Levy, “Erosion Mechanism in Ductile Metals”, Wear, Vol.70, 1981, pp.1-27.

    51. D. E. Kim and N. P. Suh, “On Microscopic Mechanisms of Friction and Wear”, Wear of Materials-1991, ASME, 1991, pp.475-480.

    52. R. E. Winter and I. M. Hutchings, “Study of Erosion by Solid Particles”, Wear, Vol.34, 1975, pp.141-148.

    53. A. R. Rosenfield, “Elastic-Plastic Fracture Mechanics and Wear”, Wear, Vol.72, 1981, pp.245-254.

    54. O. Vingsbo, “Wear and Wear Mechanism”, Wear of Materials-1979, ASME, 1979, pp.620-636.

    55. M. A. Moore and R. M. Douthwaite, “Plastic Deformation Below Worn Surfaces”, Metallurgical Transactions, 7A, 1976, pp.1833-1839.

    56. S. M. Wiederhorn and B. J. Hockey, “Effect of Material Parameters on the Erosion Resistance of Brittle Materials”, Journal of Materials Science, Vol.18, 1983, pp.766-780.

    57. K. Adachi, K. Kato and N. Chen, “Wear Map of Ceramics”, Wear of Materials-1997, ASME, 1997, pp.156-168.

    58. Y. I. Oka, M. Matsumura and T. Kawabata, “Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact”, Wear, 162-164, 1993, pp.688-695.

    59. D. G. Rickerby, “Correlation of Erosion with Mechanical Properties in Metals”, Wear, Vol.84, 1983, pp.393-395.

    60. A. Ninham, “The Effect of Mechanical Properties on Erosion”, Wear, Vol.121, 1988, pp.307-324.

    61. T. Foley and A. V. Levy, “The Effect of Heat Treatment on the Erosion Behavior of Steel”, Wear of Materials-1983, ASME, 1983, pp. 346-353.

    62. T. Luyendijk and H. Nieswaag, “Crack Growth and Fracture Tounghness in Nodular Cast Iron”, Solidification Technology in the Foundry and Cast House, 1980, pp.15-17.

    63. J. F. Janowak and R. B. Gundlach, “Development of a Ductile Iron for Commercial Austempering”, AFS Trans., 1983, pp.377-388.

    64. D. J. Moore, T. N. Rouns and K. B. Rundman, “Structure and Mechanical Properties of Austempered Ductile Iron”, AFS Trans., 1985, pp.705-718.

    65. L. C. Chang, “Carbon Content of Austenite in Austempered Ductile Iron”, Scripta Mater., Vol.39, No.1, 1998, pp.35-38.

    66. L. C. Chang and H. D. H. Bhadeshia, “Metallographic Observations of Bainite Transformation Mechanism”, Mat. Sci.and Tech., Vol.105, 1995, 105-108.

    67. T. N. Rouns, K. B. Rundman and D. J. Moore, “On the Structure and Properties of Austempered Ductile Cast Iron”, AFS Trans., 1984, pp.815-840.

    68. R. C. Voigt, “Austempered Ductile Iron-Processing and Properties”, Cast Metal, Vol.2, No.2, 1989, pp.71-93.

    69. H. K. D. H. Bhadeshia, “Bainite in Steels”, The Institute of Materials, 1992, pp.10.

    70. R.B. Gundlach and J. F. Janowak, “On the Structure and Properties of Austempered Ductile Cast Iron”, AFS Trans., Vol.92, 1984, pp.815-840.

    71. P. A. Blackmore and R. A. Harding, “The Effects of Metallurgical Process Variables on the Properties of Austempered Ductile Irons”, J. Heat Treating, Vol.3, No.4, 1984, pp.310-325.

    72. K. Rohring, “Resistance of Intermediate-Step Heat-Treated Spheroidal Graphite Cast Iron to Abrasive Wear”, Vol.13 (2), 1988, pp.4-12.

    73. 謝成興,沃斯回火球狀石墨鑄鐵300K至873K的拉伸變形特性,國立成功大學材料科學及工程研究所博士論文,民國84年。

    74. K. Fukuyama, “Fatigue Properties of Austempered Ductile Cast Iron at Room and Elevated temperatures”, J. Soc. Mater. Sci., Jpn.44 (501), 1995, pp.776-781.

    75. C. K. Lin and Y. L. Pai, “Low-Cycle Fatigue of Austempered Ductile Irons at Various Strain Ratious”, Int. J. Fatigue, Vol.21, 1999, pp.45-54.

    76. S. K. Putatunda and P. P. Rap, “Comparative Study of Fracture Toughness of Austempered Ductile Irons with Upper and Lower Ausferrite Microstructures”, Mat. Sci. and Technol., Vol.A286, 1999, pp.15-31.

    77. D. J. Moore, T. N. Rouns and K. B. Rundman, “ The Effect of Heat Treatment, Mechanical Deformation, and Alloying Element Additions on the Rate of Bainite Formation in Austempered Ductile Irons”, J. Heat Treating, Vol.4, No.1, 1985, pp.7-24.

    78. B. P. J. Sandvik, ”The Bainite Reaction in Fe-Si-C-Alloy: The Primary Stage”, Metall. Trans., Vol. 13A, May, 1982, pp.777-787.

    79. R. O. Ritchie, M. H. C. Cedeno, V. F. Zackay and E. R. Parker, “Effect of Silicon Addition and Retained Austenite on Stress Corrosion Cracking in Ultrahigh Strength Steels”, Metall. Trans., Vol. 9A, 1978, pp.35-40.

    80. T. S. Lee, J. L. Routbort, K. C. Goretta, R. B. Schwarz, T. J. Tiainen and A. Mayer, “Solid Particle Erosion of Heat-Treated Ni80P20”, Wear, Vol.171, 1994, pp. 211-214.

    81. R. Bellman and A. Levy, “Erosion Mechanism in Ductile Metals”, Wear, Vol.70, 1981, pp.1-27.

    82. T. Christman and P. G. Shewmon, “Adiabatic Shear Localization and Erosion of Strong Aluminum Alloys”, Wear, Vol.54, 1979, pp.145-155.

    83. R. E. Winter and I. M. Hutching, “Study of Erosion by Solid Particles”, Wear, Vol.34, 1975, pp. 141-148.

    84. K. H. Zum Gahr, “Relation Between Abrasive Wear Rate and Fracture Toughness of Metallic Materials”, Z. Metallkd., Vol.69, 1978, pp.643-650.

    85. Y. S. Lerner, G. R. Kingsbury, “Wear Resistance Properties of Austempered Ductile Iron”, J. of Materials Engineering and Performance”, Vol.7(1), 1998, pp.48-52.

    86. R. C. Dommarco, “Rolling Contact Fatigue (RCF) resistance of Austempered Ductile Iron”, Wear, Vol.221, 1998, pp.69-74.

    87. L. Magalhaes, J. Seabra,” Wear and scuffing of Austempered Ductile Iron Gears”, Wear., Vol.215, 1998, pp.237-246.

    88. H. T. Angus, Cast iron: physical and engineering properties, Butter- worths, London, 1976, Chap.1.

    89. D. A. Jablonski, “ The Effect of Ceramic Inclusion on the Low-Cycle Fatigue Life of Low-Carbon Astroloy Subjected to Hot Isostatic Pressing”, Mater. Sci. Eng., Vol.48, 1981, pp.187-198.

    90. 汪建民,陶瓷技術手冊,中華民國科技發展會,民國83年,第213頁。

    91. 蕭富昌,肥粒體基球墨鑄鐵中低溫脆性之探討,國立成功大學材料科學及工程研究所博士論文,民國87年。

    92. F. T. Shiao, T. S. Lui and L. H. Chen, “Distribution of the Inclusion Particles in Ferrite Spheroidal Graphite Cast Iron”, Mater. Trans., JIM, Vol. 39, No.10, 1998, pp. 1033-1039.

    93. 簡絲男,鑄態球墨鑄鐵共振特性之探討,國立成功大學材料科學及工程研究所碩士論文,民國89年。

    94. 施議訓,影響鋼/石墨複合金屬材料顯微組織之因素及特性研究,大同工學院博士論文,民國89年。

    下載圖示 校內:2003-10-03公開
    校外:2003-10-03公開
    QR CODE