| 研究生: |
洪飛義 Hung, Fei-Yi |
|---|---|
| 論文名稱: |
矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響 The Effects of Si Content and Matrix Structure on the Particle Erosion Behavior of Spheroidal Graphite Cast Irons |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 球墨鑄鐵 、沖蝕磨耗 |
| 外文關鍵詞: | erosion, spheroidal graphite cast iron |
| 相關次數: | 點閱:98 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
球墨鑄鐵廣泛應用於許多顆粒沖蝕磨耗環境,其化學組成與基地組織對沖蝕磨耗行為的影響很大。本研究之試料具有2.1 wt.%、2.8 wt.%及4.2 wt.% 三種不同矽含量(碳含量固定約為3.5 wt.%左右),基地組織包含鑄態、肥粒體基、波來體基以及上變韌體基。重點在探討上述矽含量及基地組織要因對本材料顆粒沖蝕磨耗行為的影響,而沖蝕顆粒性質對沖蝕磨耗之效應亦一併檢討。沖蝕試驗選用之沖蝕顆粒為粒徑約295mm之SiO2或約275mm之Al2O3; SiO2 顆粒的沖蝕速度約為66 m sec-1,Al2O3 顆粒則約為 73 m sec-1。
實驗結果顯示,鑄態試料之矽含量降低會增加波來體面積率,並相對減少肥粒體面積率,因而增進沖蝕磨耗阻抗。單相肥粒體基試料隨著矽含量的增加,其沖蝕磨阻抗因固溶硬化效應較顯著而增大。此外,矽含量固定時,波來體基試料的低角度沖蝕磨耗阻抗隨著雪明碳體層狀間距減小而提升,高角度沖蝕磨耗阻抗則隨著雪明碳體層狀間距減小而明顯降低。鑄態與肥粒體基試料最大沖蝕磨耗率的沖蝕角度約在300附近,而波來體基試料則隨著層狀間距減少使得最大沖蝕磨耗率之沖蝕角度由300遷移至450附近。
根據2.1 wt.% Si及2.8 wt.% Si之上變韌體基沃斯回火球墨鑄鐵的實驗結果,第一階段熱處理之沃斯回火球墨鑄鐵隨著沃斯回火時間縮短,基地中的麻田散體量增加,除了降低沖蝕磨耗阻抗之外,並造成沖蝕磨耗率對沖蝕角度之關係曲線具有雙峰型態。第二階段熱處理之上變韌體基沃斯回火球墨鑄鐵隨著沃斯回火時間增加,基地中的殘留沃斯田體含量減少及促成碳化物生成,因而降低材料的耐沖蝕磨耗性,亦使其單峰型態之沖蝕磨耗率曲線的最大沖蝕磨耗率所對應之沖蝕角度往高角度側偏移。至於高矽含量(4.2 wt.% Si)上變韌體基沃斯回火球墨鑄鐵因固溶效應顯著、基地中碳化物生成,以及殘留沃斯田體量減少等要因,導致試料的耐沖蝕磨耗阻抗降低,並造成該試料之沖蝕磨耗率曲線由單峰型態轉變成雙峰型態。此外,上變韌體基沃斯回火球墨鑄鐵試料經沖蝕磨耗後其殘留沃斯田體相、高碳肥粒體相與其他碳化物均會進一步相變態,而主要生成相為e-碳化物。
在相同磨耗條件下,Al2O3的沖蝕移除能力大於SiO2;上變韌體基沃斯回火球墨鑄鐵的耐沖蝕磨耗阻抗優於波來體基試料。其中,上變韌體基沃斯回火球墨鑄鐵經適當熱處理使組織中含較多量之殘留沃斯田體相可提升耐沖蝕磨耗阻抗。降低波來體基試料矽含量,並藉由熱處理增大雪明碳鐵層狀間距能有效改善其耐沖蝕磨耗性能。
Spheroidal graphite cast irons have been used in many environments involving particle erosion. Both of the silicon content and the matrix phase resulted in differentia of erosion behavior in spheroidal graphite cast irons. The study had investigated the particle-erosion behavior of as-cast, ferritic, pearlitic and upper bainitic specimens. The carbon content of each specimen was controlled at approximately 3.5 wt.% and changed the three kinds different silicon content (2.1 wt.% Si, 2.8 wt.% Si and 4.2 wt.% Si) and the heat treatment conditions. The SiO2 particle of 295mm mean diameter and the Al2O3 particle of 275mm mean diameter were selected as the erodent. The purpose of this study should reveal the erosion behavior of the silicon content and the matrix phase in spheroidal graphite cast irons.
The results indicate that a decrease in the silicon content promotes an increase in the vol.% pearlite phase and a decrease in the vol.% ferrite phase, thereby improving the erosion resistance. For the full ferritic specimens, an increase in the silicon content significantly hardens the ferrite phase and decreases the erosion rate. Furthermore, for the full pearlite specimens with the same silicon content, increasing the interlamellar spacing leads to an increased erosion rate in the oblique impact range, but results in a decreased erosion rate at a larger impact degree. The impact angle at which the maximum erosion rate occurs on the erosion curve is approximately 300 for the as-cast and ferritic specimens. However, the impact angle tends to shift towards a higher end (300®450) as the interlamellar spacing small for the PDI specimens.
For the 2.1 wt.% Si and 2.8 wt.% Si specimens, a decrease in austempering duration promotes an increase in the martensite phase, thereby debasing the erosion resistance in the Stage I ADI. Meanwhile, a double peak curve formed by the erosion rate data can be found. In the Stage II ADI, the retained austenite tends to decrease in amount and the resultant carbides precipitate in the matrix as the austempering duration prolonging. Consequently, the erosion resistance decrease and the impact angle of maximum erosion rate shifts to the side of the higher angle.
The effect of solid solution is obvious in the ADI with higher silicon content (up to about 4.2 weight %). The formation of carbides and a decrease in the retained austenite phase as a result of the prolonged austempering duration that turns the curve of erosion rate from single peak into double peak and debase the erosion resistance. The austentite phase and unstable high carbon ferrite that transform into e-carbides as induced after the erosion.
ADI possesses better erosion resistance than PDI under identical comparison conditions. The PDI specimens with lower silicon content, higher l value and higher cementite fraction show better erosion resistance than other non-ADI specimens. The ADI specimens with higher retained austenite contents through the heat treatment condition possess better erosion resistance.
1. K. Shimizu, T. Noguchi, T. Kamada and H. Takasaki, “Progress of Erosive Wear in Spheroidal Graphite Cast Iron”, Wear, Vol.198, 1996, pp.150-155.
2. I. Finnie, “ Erosion of Surfaces by Solid Particles”, Wear, Vol.3, 1960, pp.87-95.
3. J. P. A. Bitter, “A Study of Erosion Phenomena Part I”, Wear, Vol.6, 1963, pp.5-12.
4. Y. I. Oka, H. Ohnogi, T. Hosokawa, and M. Matsumura, “The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact”, Wear, 203-204, 1997, pp.573-579.
5. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, Treatise on Materials Science and Technology, 13th ed., D. Scott, Academic Press, New York, 1979, pp.287-319.
6. I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles”, J. Materials, Vol.2, 1967, pp.682-700.
7. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice-Hall, Englewood Cliffs, New Jersey, 1988, pp.209-287.
8. K. H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier, Amsterdam, 1987, 1st ed., pp.531-553.
9. 劉中偉,片狀石墨鑄鐵與鋁-矽系合金之矽砂沖蝕磨耗特性研究,國立成功大學材料科學及工程研究所博士論文,民國87年。
10. W. S. Dai, L. H. Chen and T. S. Lui, “A study on SiO2 ParticleErosion of Flake Graphite and Spheroidal Graphite Cast Irons”, Wear, Vol.239, 2000, pp.143-152.
11. K. Shimizu, T. Noguchi, T. Yamaguchi and T. Kamada, “Basic Study on Erosive Wear of Ductile Iron”, AFS Trans., Vol.102, 1994, pp.285-289.
12. K. Shimizu, T. Noguchi and S. Doi, “Basic Study on the Erosive Wear of Austempered Ductile Iron”, AFS Trans., Vol.101, 1994, pp.225-229.
13. Y. Osafune and Y. Tanaka, “Self-hardening Behavior by Water and Sand-erosion Wear on Austempered Spheroidal Graphite Cast Iron”, J. Japan Foundry Engr. Soc. Vol.73(2), 2001, pp.105-110.
14. 許益誌,沃斯回火熱處理與球墨分佈對沃斯回火鑄鐵沖蝕磨耗影響之探討,國立成功大學材料科學及工程研究所碩士論文,民國82年。
15. 戴文雄,石磨鑄鐵的電漿電弧表面重熔改質及矽砂沖蝕磨耗研究,國立成功大學材料科學及工程研究所博論文,民國89年。
16. 洪飛義、陳立輝,呂傳盛, “沃斯回火球墨鑄鐵沖蝕磨耗特性研究”,鑄造年會論文集,民國89年,第189-194頁。
17. J. H. Neilson and A. Gilchrist, “Erosion by a Stream of Solid Particle”, Wear, Vol.11, 1968, pp.111-122.
18. A. V. Levy, “ The Platelet Mechanism of Erosion of Ductile Metals”, Wear, Vol.108, 1986, pp.1-21.
19. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, Vol.177, 1994, pp.185-193.
20. D. G. Rickerby, “Correlation of Erosion with Mechanical Properties in Metals”, Wear, Vol.84, 1983, pp.393-395.
21. K. P. Balan, A. V. Reddy, V. Joshi and G. Sundararajan, “The Influence of Microstructure on the Erosion Behavior of Cast Irons”, Wear, Vol.145, 1991, pp.283-296.
22. M. Liebhard and A. V. Levy, “The Effect of Erodent Particle Characteristics on the Erosion of Metals”, Wear, Vol.151, 1991, pp.381-390.
23. I. M. Hutchings, “Prediction of the Resistance of Metals to Erosion by Solid Particles”, Wear, Vol.35, 1975, pp.371-374.
24. P. J. Slikkerveer, P. C. P. Bouten, F. H. in’t Veld and H. Scholten, “Erosion and Damage by Sharp Particles”, Wear, Vol.217, 1998, pp.237-250.
25. W. F. Adler, “Analysis of Particulate Erosion”, Wear, Vol.37, 1976, pp.345-352.
26. S. Bahadur and R. Badruddin, “Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion”, Wear, Vol.138, 1990, pp.189-208.
27. L. P. McCabe, G. A. Sargent and H. Conrad, “Effect of Mirostructure on the Erosion of Steel by Solid Particles”, Wear, Vol.105, 1985, pp.257-277.
28. H. Reshetnyak and J. Kuybarsepp, “Mechanical Properties of Hard Metals and Their Erosive Wear Resistance”, Wear, Vol.177, 1994, pp.185-193.
29. G. Sundararajan, “The Solid Particle Erosion of Metallic Materials: The Rationalization of the Influence of Material Variables”, Wear, 186-187, 1995, pp.129-138.
30. S. Lathabai, M. Ottmuller and I. Fernsandez, “Solid Particle Erosion Behavior of Thermal Sprayed Ceramic, Metallic and Ploymer Coatings”, Wear, Vol.221, 1998, pp.93-108.
31. G. Sundararajan, “The Depth of Plastic Deformation Beneath Eroded Surfaces-The Infuence of Impact Angle and Velocity, Particle Shape and Material Properties”, Wear of Materials-1991, ASME, 1991, pp.111-122.
32. I. Finnie, J. Wolak and Y. Kabil, “Erosion of Metals by Solid Particles”, Vol.2, 1967, pp.682-700.
33. G. P. Tilly, “Erosion Caused by Impact of Solid Particles”, in Treatise on Materials Science and Technology, Vol.13, ed., D. Scott, Academic Press, New York, 1979, pp.287-319.
34. W. H. Jennings, W. J. Head and C. R. Manning, Jr., “A Mechanistic Model for the Prediction of Ductile Erosion”, Wear, Vol.49, 1976, pp.93-112.
35. I. Finnie, G. R. Stevick and J. R. Ridgely, “The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles”, Wear, Vol.152, 1992, pp.91-99.
36. R. G. Wellman and C. Allen, “The Effects of Angle of Impact and Matetial Properties on the Erosion Rates of Ceramics”, Wear, Vol.186-187, 1995, pp.117-122.
37. J. L. Routbort, R. O. Scattergood and A. P. L. Turner, “The Erosion of Reaction-Bonded SiC”, Wear, Vol.59, 1980, pp.363-375.
38. D. Chen, M. Sarumi, S.T. S. Al-Hassani, S. Gan, and Z. Yin, “A Model for Erosion at Normal Impact”, Wear, Vol.205, 1997, pp.32-39.
39. A. V. Levy and B. Wang, “Erosion of Hard Material Coating Systems”, Wear, Vol.121, 1988, pp.325-346.
40. W. F. Adler, “Analytical Modeling of Multiple Particle Impacts on Brittle Materials”, Wear, 37, 1976, pp.353-364.
41. R. G. Wellman and C. Allen, “The Effect of Angle of Impact and Material Properties on the Erosion Rates of Ceramics”, Wear, 186-187, 1995, pp.117-125.
42. L. K. Hien and P. G. Shewmon, “Effects of Hardness on the Solid Particle Erosion Mechanisms in AISI 1060 Steel”, Wear, Vol.89, 1983, pp.291-302.
43. A. Magnee, Generalized Law of Erosion: “Application to Various Alloys and Intermetallics”, Wear, Vol.181-183, 1995, pp.500-510.
44. W. S. Dai, L. H. Chen and T. S. Lui, “ SiO2 Particle Erosion of Spheroidal Graphite Cast Iron after Surface Remelting by the Plasma Transferred Arc Process”, Wear, Vol.248, 2001, pp.201-210.
45. D. F. Wang and Z. Y. Mao, “A Study for Erosion of Si3N4 Ceramics by Impact of Solid Particles”, Wear, Vol.199, 1996, pp.283-286.
46. T. N. Rouns and K. B. Rundman, “On the Effect of Molybdenum on the Kinetics of Tempering Ductile Cast Irons” AFS Trans., 1983, pp.25-36.
47. I. Finnie and D. H. McFadden, “On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence”, Wear, Vol.48, 1978, pp.181-190.
48. A. Misra and I. Finnie, “ On the Size Effect in Abrasive and Erosive Wear”, Wear, Vol.65, 1981, 359-373.
49. A. Levy, M. Aghazadeh and G. Hickey, “The Effect of Test Variables on the Platelet Mechanism of Erosion”, Wear, Vol.108, 1986, pp.23-41.
50. R. Bellman, Jr., and A. Levy, “Erosion Mechanism in Ductile Metals”, Wear, Vol.70, 1981, pp.1-27.
51. D. E. Kim and N. P. Suh, “On Microscopic Mechanisms of Friction and Wear”, Wear of Materials-1991, ASME, 1991, pp.475-480.
52. R. E. Winter and I. M. Hutchings, “Study of Erosion by Solid Particles”, Wear, Vol.34, 1975, pp.141-148.
53. A. R. Rosenfield, “Elastic-Plastic Fracture Mechanics and Wear”, Wear, Vol.72, 1981, pp.245-254.
54. O. Vingsbo, “Wear and Wear Mechanism”, Wear of Materials-1979, ASME, 1979, pp.620-636.
55. M. A. Moore and R. M. Douthwaite, “Plastic Deformation Below Worn Surfaces”, Metallurgical Transactions, 7A, 1976, pp.1833-1839.
56. S. M. Wiederhorn and B. J. Hockey, “Effect of Material Parameters on the Erosion Resistance of Brittle Materials”, Journal of Materials Science, Vol.18, 1983, pp.766-780.
57. K. Adachi, K. Kato and N. Chen, “Wear Map of Ceramics”, Wear of Materials-1997, ASME, 1997, pp.156-168.
58. Y. I. Oka, M. Matsumura and T. Kawabata, “Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact”, Wear, 162-164, 1993, pp.688-695.
59. D. G. Rickerby, “Correlation of Erosion with Mechanical Properties in Metals”, Wear, Vol.84, 1983, pp.393-395.
60. A. Ninham, “The Effect of Mechanical Properties on Erosion”, Wear, Vol.121, 1988, pp.307-324.
61. T. Foley and A. V. Levy, “The Effect of Heat Treatment on the Erosion Behavior of Steel”, Wear of Materials-1983, ASME, 1983, pp. 346-353.
62. T. Luyendijk and H. Nieswaag, “Crack Growth and Fracture Tounghness in Nodular Cast Iron”, Solidification Technology in the Foundry and Cast House, 1980, pp.15-17.
63. J. F. Janowak and R. B. Gundlach, “Development of a Ductile Iron for Commercial Austempering”, AFS Trans., 1983, pp.377-388.
64. D. J. Moore, T. N. Rouns and K. B. Rundman, “Structure and Mechanical Properties of Austempered Ductile Iron”, AFS Trans., 1985, pp.705-718.
65. L. C. Chang, “Carbon Content of Austenite in Austempered Ductile Iron”, Scripta Mater., Vol.39, No.1, 1998, pp.35-38.
66. L. C. Chang and H. D. H. Bhadeshia, “Metallographic Observations of Bainite Transformation Mechanism”, Mat. Sci.and Tech., Vol.105, 1995, 105-108.
67. T. N. Rouns, K. B. Rundman and D. J. Moore, “On the Structure and Properties of Austempered Ductile Cast Iron”, AFS Trans., 1984, pp.815-840.
68. R. C. Voigt, “Austempered Ductile Iron-Processing and Properties”, Cast Metal, Vol.2, No.2, 1989, pp.71-93.
69. H. K. D. H. Bhadeshia, “Bainite in Steels”, The Institute of Materials, 1992, pp.10.
70. R.B. Gundlach and J. F. Janowak, “On the Structure and Properties of Austempered Ductile Cast Iron”, AFS Trans., Vol.92, 1984, pp.815-840.
71. P. A. Blackmore and R. A. Harding, “The Effects of Metallurgical Process Variables on the Properties of Austempered Ductile Irons”, J. Heat Treating, Vol.3, No.4, 1984, pp.310-325.
72. K. Rohring, “Resistance of Intermediate-Step Heat-Treated Spheroidal Graphite Cast Iron to Abrasive Wear”, Vol.13 (2), 1988, pp.4-12.
73. 謝成興,沃斯回火球狀石墨鑄鐵300K至873K的拉伸變形特性,國立成功大學材料科學及工程研究所博士論文,民國84年。
74. K. Fukuyama, “Fatigue Properties of Austempered Ductile Cast Iron at Room and Elevated temperatures”, J. Soc. Mater. Sci., Jpn.44 (501), 1995, pp.776-781.
75. C. K. Lin and Y. L. Pai, “Low-Cycle Fatigue of Austempered Ductile Irons at Various Strain Ratious”, Int. J. Fatigue, Vol.21, 1999, pp.45-54.
76. S. K. Putatunda and P. P. Rap, “Comparative Study of Fracture Toughness of Austempered Ductile Irons with Upper and Lower Ausferrite Microstructures”, Mat. Sci. and Technol., Vol.A286, 1999, pp.15-31.
77. D. J. Moore, T. N. Rouns and K. B. Rundman, “ The Effect of Heat Treatment, Mechanical Deformation, and Alloying Element Additions on the Rate of Bainite Formation in Austempered Ductile Irons”, J. Heat Treating, Vol.4, No.1, 1985, pp.7-24.
78. B. P. J. Sandvik, ”The Bainite Reaction in Fe-Si-C-Alloy: The Primary Stage”, Metall. Trans., Vol. 13A, May, 1982, pp.777-787.
79. R. O. Ritchie, M. H. C. Cedeno, V. F. Zackay and E. R. Parker, “Effect of Silicon Addition and Retained Austenite on Stress Corrosion Cracking in Ultrahigh Strength Steels”, Metall. Trans., Vol. 9A, 1978, pp.35-40.
80. T. S. Lee, J. L. Routbort, K. C. Goretta, R. B. Schwarz, T. J. Tiainen and A. Mayer, “Solid Particle Erosion of Heat-Treated Ni80P20”, Wear, Vol.171, 1994, pp. 211-214.
81. R. Bellman and A. Levy, “Erosion Mechanism in Ductile Metals”, Wear, Vol.70, 1981, pp.1-27.
82. T. Christman and P. G. Shewmon, “Adiabatic Shear Localization and Erosion of Strong Aluminum Alloys”, Wear, Vol.54, 1979, pp.145-155.
83. R. E. Winter and I. M. Hutching, “Study of Erosion by Solid Particles”, Wear, Vol.34, 1975, pp. 141-148.
84. K. H. Zum Gahr, “Relation Between Abrasive Wear Rate and Fracture Toughness of Metallic Materials”, Z. Metallkd., Vol.69, 1978, pp.643-650.
85. Y. S. Lerner, G. R. Kingsbury, “Wear Resistance Properties of Austempered Ductile Iron”, J. of Materials Engineering and Performance”, Vol.7(1), 1998, pp.48-52.
86. R. C. Dommarco, “Rolling Contact Fatigue (RCF) resistance of Austempered Ductile Iron”, Wear, Vol.221, 1998, pp.69-74.
87. L. Magalhaes, J. Seabra,” Wear and scuffing of Austempered Ductile Iron Gears”, Wear., Vol.215, 1998, pp.237-246.
88. H. T. Angus, Cast iron: physical and engineering properties, Butter- worths, London, 1976, Chap.1.
89. D. A. Jablonski, “ The Effect of Ceramic Inclusion on the Low-Cycle Fatigue Life of Low-Carbon Astroloy Subjected to Hot Isostatic Pressing”, Mater. Sci. Eng., Vol.48, 1981, pp.187-198.
90. 汪建民,陶瓷技術手冊,中華民國科技發展會,民國83年,第213頁。
91. 蕭富昌,肥粒體基球墨鑄鐵中低溫脆性之探討,國立成功大學材料科學及工程研究所博士論文,民國87年。
92. F. T. Shiao, T. S. Lui and L. H. Chen, “Distribution of the Inclusion Particles in Ferrite Spheroidal Graphite Cast Iron”, Mater. Trans., JIM, Vol. 39, No.10, 1998, pp. 1033-1039.
93. 簡絲男,鑄態球墨鑄鐵共振特性之探討,國立成功大學材料科學及工程研究所碩士論文,民國89年。
94. 施議訓,影響鋼/石墨複合金屬材料顯微組織之因素及特性研究,大同工學院博士論文,民國89年。