簡易檢索 / 詳目顯示

研究生: 張承瑒
Chang, Cheng-Yang
論文名稱: 二苯呋喃骨架之綠色螢光蛋白發光團類似物:合成、光物理性質及TEMPO引發之環化反應
Dibenzofuran-Based GFP Fluorophore Analogues: Synthesis, Photophysical Properties, and TEMPO-Mediated Cyclization
指導教授: 宋光生
Sung, Kuang-Sen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 98
中文關鍵詞: 綠色螢光蛋白環化反應TEMPO共軛
外文關鍵詞: GFP flouromophore, cyclization, conjugation, TEMPO
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過往的研究中,實驗室的陳怡惠學姊發表鄰位胺基之綠色螢光蛋白衍生物 o-ABDI之合成,之後黃世昱學長使用 o-DHPBDI 與銅離子試劑進行反應時發現環化重排產物 DHPIO,加上簡翊婷同學發現其副產物 DHPIO-Cl、DHPIO-Cl2進一步了解環化反應產率低之原因 。
    起初為了解環化反應之反應機制,於本文研究中嘗試引入TEMPO試劑,一種自由基捕捉試劑參與環化反應,結果卻得另一新環化產物 TPO-TBAF ,此產物為七元環、五元環、六元環相連之多環結構,以及 TEMPO之基團接在 imidazole二號甲基位子上,從光物理性質來看可以發現 TPO-TBAF螢光量子產率比起 o-DHPDBFI有顯著提升,推論原因為TPO-TBAF為環化結構,整體較 o-DHPDBFI剛性,分子旋轉及振動自由度較低,以及 TPO-TBAF無 TICT現象產生,整體以LE態螢光放射為主,造成螢光量子產率大幅上升。
    此外,本文研究引入二苯呋喃骨架及苯環取代基增加整體分子共軛性,探討其吸收及螢光光譜紅移現象,結果顯示本文研究衍生物o-DHPDBFI與o-DHPBDI於光譜中無顯著紅移現象,推測原因為取代基角度扭曲及整體分子平面性較低所導致電子供體-受體區域共軛重疊性不佳,才無預期之紅移現象產生 。

    In previous studies, Yi-Hui Chen, a senior member of our laboratory, reported the synthesis of o-ABDI, a green fluorescent protein derivative containing an ortho-amino group. Subsequently, Shih-Yu Huang discovered a cyclized rearrangement product, DHPIO, when reacting o-DHPBDI with a copper reagent. Later, Yi-Ting Chien identified side products DHPIO-Cl and DHPIO-Cl₂, further elucidating the reasons behind the low yield of the cyclization reaction.
    To investigate the reaction mechanism, the present study introduced TEMPO, a known radical scavenger, into the cyclization process. Unexpectedly, a new cyclized product, TPO-TBAF, was obtained. This compound features a polycyclic structure composed of a seven-membered, five-membered, and six-membered ring, with the TEMPO group attached to the 2-position methyl group of the imidazole ring. From a photophysical perspective, a significant increase in fluorescence quantum yield was observed. This enhancement is attributed to the cyclized and more rigid structure of TPO-TBAF compared to o-DHPDBFI, resulting in reduced intramolecular rotation and vibrational freedom. Additionally, the absence of TICT (twisted intramolecular charge transfer) behavior in TPO-TBAF leads to fluorescence dominated by the LE (locally excited) state, thereby boosting emission efficiency.
    Furthermore, this study introduced a dibenzofuran core and phenyl substituents to enhance the overall π-conjugation of the molecule and examined the resulting red-shift behavior in absorption and fluorescence spectra. However, no significant red-shift was observed between the derivatives o-DHPDBFI and o-DHPBDI. This is likely due to the torsional distortion of the substituents and the low planarity of the overall molecular structure, which diminish the conjugative overlap between the donor and acceptor regions, thus preventing the expected bathochromic shift.

    中文摘要 i 英文延伸摘要 ii 致謝 xii 表目錄 xvi 圖目錄 xvii 第I部分 序論 1 I-1 綠色螢光蛋白發光團之發展 1 I-2 人工合成之綠色螢光蛋白類似物 3 I-3 綠色螢光蛋白發光團之光譜特性與分析 3 I-4 過往實驗室綠色螢光蛋白衍生物之研究 6 I-5 含二苯呋喃骨架化合物之發展及光譜分析 10 I-6 螢光現象與能態轉換機制 13 I-7 分子結構共軛程度對光譜紅移現象影響 15 I-7-1 以Hückel分子軌域理論說明 15 I-7-2 以量子力學:一維盒中質點說明 16 I-8 TEMPO試劑於有機合成反應之應用 18 I-8-1 TEMPO試劑於不同反應中之角色 18 I-8-2 TEMPO參與之分子內環化反應 19 I-9 實驗動機 21 第II部分 結果與討論 22 II-1 GFP衍生物o-DHPDBFI及環化產物TPO-TBAF之合成 22 II-2 o-DHPDBFI環化反應之起始物與產物光譜分析 31 II-2-1 吸收光譜之分析 31 II-2-2 螢光放射光譜之分析 34 II-3 o-DHPDBFI與TPO-TBAF光譜之比較與光物理性質變化 36 II-3-1 電子吸收光譜及螢光放射光譜之比較 36 II-3-2 螢光量子產率分析與比較 37 II-4 o-DHPDBFI與o-DHPBDI光譜數據對比 37 II-5 結論 39 第III部分 實驗儀器及實驗方法 40 III-1 實驗儀器 40 III-1-1 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer) 40 III-1-2 高解析質譜儀(High Resolution Mass Spectrometry, ESI-MS) 40 III-1-3 紫外-可見光光譜儀(UV-Vis Spectrometry, PerkinElmer) 40 III-1-4 螢光放射光譜儀(Fluorescence Spectrometer, PerkinElmer, LS 45) 40 III-2 綠色螢光蛋白衍生物的合成 41 III-2-1 合成TPO-TBAF十步驟 41 III-3 o-DHPDBFI及其TPO-TBAF基本物理性質的測定 49 III-3-1 吸收光譜的測定及莫爾吸收係數的計算 49 III-3-2 螢光光譜測定 49 III-3-3 標準液校正以及計算螢光量子產率 49 第IV部分 參考文獻 50 第V部分 附錄 52 V-1 GFP衍生物NMR圖譜 52 V-1-1 4-(2-iodophenoxy)-2-nitrobenzaldehyde 1H NMR 52 V-1-2 2-(4-(2-iodophenoxy)-2-nitrophenyl)-1,3-dioxolane 1H NMR 53 V-1-3 2-(1,3-dioxolan-2-yl)-3-nitrodibenzo[b,d]furan 1H NMR 54 V-1-4 3-nitrodibenzo[b,d]furan-2-carbaldehyde 1H NMR 55 V-1-5 (Z)-2-methyl-4-((3-nitrodibenzo[b,d]furan-2-yl)methylene)oxazol-5(4H)-one 1H NMR 56 V-1-6 (Z)-2-acetamido-N-(4-chlorophenyl)-3-(3-nitrodibenzo[b,d]furan-2-yl)acrylamide 1H NMR 57 V-1-7 (Z)-3-(4-chlorophenyl)-2-methyl-5-((3-nitrodibenzo[b,d]furan-2-yl)methylene)-3,5-dihydro-4H-imidazol-4-one 1H NMR 58 V-1-8 (Z)-5-((3-aminodibenzo[b,d]furan-2-yl)methylene)-3-(4-chlorophenyl)-2-methyl-3,5-dihydro-4H-imidazol-4-one 1H NMR 59 V-1-9 (Z)-3-(4-chlorophenyl)-5-((3-((2,3-dihydroxypropyl)amino)dibenzo[b,d]furan-2-yl)methylene)-2-methyl-3,5-dihydro-4H-imidazol-4-one (o-DHPDBFI) 1H NMR 60 V-1-10 2-(4-chlorophenyl)-5-hydroxy-2a-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-2,2a,4,5,5a,6-hexahydro-1H-3,8-dioxa-2,2a1,6-triazabenzo[8,1]azuleno[6,5-b]fluoren-1-one (TPO-TBAF) 1H NMR 61 V-1-11 (Z)-3-(4-chlorophenyl)-5-((3-((2,3-dihydroxypropyl)amino)dibenzo[b,d]furan-2-yl)methylene)-2-methyl-3,5-dihydro-4H-imidazol-4-one (o-DHPDBFI) 13C NMR 62 V-1-12 2-(4-chlorophenyl)-5-hydroxy-2a-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-2,2a,4,5,5a,6-hexahydro-1H-3,8-dioxa-2,2a1,6-triazabenzo[8,1]azuleno[6,5-b]fluoren-1-one (TPO-TBAF) 13C NMR 63 V-2 GFP衍生物o-DHPDBFI及TPO-TBAF質譜 (ESI-Mass) 64 V-2-1 o-DHPDBFI質譜 64 V-2-2 TPO-TBAF質譜 65 V-3 TPO-TBAF單晶數據 66

    [1]Shimomura, O. Discovery of Green Fluorescent Protein, GFP. Angew. Chem. Int. Ed. 48, 5590 – 5602, 2009.
    [2] Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544, 1998.
    [3] Remington, S. J. Green fluorescent protein: A perspective. Protein science. 20, 1509-1519, 2011.
    [4] Niwa, H., Inouye, S., Hirano, T., Matsuno, T., Kojima, S., Kubota, M., Ohashi, M., Tsuji, F. I. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proceedings of the National Academy of Sciences. 93, 13617-13622, 1996.
    [5] Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem.Rev. 102, 759−781, 2002.
    [6] Yang, J. S., Huang, G. J., Liu, Y. H., Peng, S. M. Photoisomerization of the green fluorescence protein chromophore and the meta-and para-amino analogues. Chemical Communications. 11, 1344-1346, 2008.
    [7] Jung, G., Wiehler, J., Zumbusch, A. The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Biophysical journal. 88, 1932-1947, 2005.
    [8] 陳怡惠. 綠色螢光蛋白類似物的合成, 光物理及光異構化反應之探討. 2012.
    [9] 黃世昱. 具有鄰位氨基丙烷-2, 3-二醇側鏈的綠色螢光蛋白發光團: 合成, 性質及應用. 2021.
    [10] 簡翊婷. 銅離子引發綠色螢光蛋白類似物環化反應: 副反應探討. 2025.
    [11] Wang, H., Xuan, M., Huang, C., Wang, C. Advances in research on bioactivity, toxicity, metabolism, and pharmacokinetics of usnic acid in vitro and in vivo. Molecules. 27, 7469, 2022.
    [12] Becker, Y., Roth, S., Scheurer, M., Jakob, A., Gacek, D. A., Walla, P. J., Dreuw, A., Wachtveitl, J., Heckel, A. Selective Modification for Red‐Shifted Excitability: A Small Change in Structure, a Huge Change in Photochemistry. Chem. Eur. J. 27, 2212-2218, 2021.
    [13] Momotake, A., Lindegger, N., Niggli, E., Barsotti, R. J., Ellis-Davies, G. C. The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells. Nature methods. 3, 35-40, 2006.
    [14] Itoh, T., Hashimoto, R. Fluorescence and nonradiative processes of dioxin vapors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 122, 158-163, 2014.
    [15] Zimmermann, J., Zeug, A., Röder, B. A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments. Phys. Chem. Chem. Phys. 5, 2964–2969, 2003.
    [16] Mustroph, H. Potential‐Energy Surfaces, the Born–Oppenheimer Approximations, and the Franck–Condon Principle: Back to the Roots. ChemPhysChem. 17, 2616–2629, 2016.
    [17] Varala, R., Seema, V. Recent applications of TEMPO in organic synthesis and catalysis. SynOpen. 7, 408–413, 2023.
    [18] Scherübl, M., Daniliuc, C. G., Studer, A. Arynes as Radical Acceptors: TEMPO‐Mediated Cascades Comprising Addition, Cyclization, and Trapping. Angew. Chem. Int. Ed. 60, 711–715, 2021.
    [19] Lusic, H., Uprety, R., Deiters, A. Improved synthesis of the two-photon caging group 3-nitro-2-ethyldibenzofuran and its application to a caged thymidine phosphoramidite. Organic letters. 12, 916-919, 2010.
    [20] Panda, N., Mattan, I., Nayak, D. K. Synthesis of dibenzofurans via C–H activation of o-iodo diaryl ethers. J. Org. Chem. 80, 6590−6597, 2015.
    [21] Baba, M., Mori, K., Yamawaki, M., Akita, K., Ito, M., Kasahara, S., Yamanaka, T. Vibronic Structure in the S1− S0 Transition of Jet-Cooled Dibenzofuran. The Journal of Physical Chemistry A. 110, 10000-10005, 2006.

    下載圖示
    校外:立即公開
    QR CODE