簡易檢索 / 詳目顯示

研究生: 陳泰佑
Chen, Tai-you
論文名稱: 水熱法合成二氧化鈦奈米纖維修飾電極應用於可見光分解水
Hydrothermal Synthesis of TiO2 Nanofiber Modified Electrode for Visible Light Water Splitting
指導教授: 周澤川
Chou, Tse-chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 131
中文關鍵詞: 二氧化鈦奈米纖維可見光分解水水熱法
外文關鍵詞: hydrothermal, water splitting, visible light, TiO2 nanofiber
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著石油危機,油價飆漲,先進國家開始積極尋找替代能源,氫能尤其受到重視。因為氫能的原料可取用於水,取之不盡,用之不竭且不會有環境污染問題,因為氫燃燒後的產物是水,符合環保意識。1972年Fujishima與Honda在光觸媒二氧化鈦表面上照光,進行水分解生成氧氣及氫氣,由於二氧化鈦光觸媒需經紫外光照射,才能激發電子-電洞對,利用激發的電子還原水產氫。由於太陽光只有5%為紫外光,如何利用其於可見光波段吸收激發電子電洞對與減少被光激發的電子電洞對在結合是本研究重要的課題。
    本研究方式利用二氧化鈦粉末與鈦片在氫氧化鈉中,置入於壓力釜中製備出高比表面積的二氧化鈦奈米纖維,在水熱溫度150℃,水熱時間八小時,可以製備出最佳二氧化鈦奈米纖維光電活性。經550℃空氣鍛燒提高結晶性且具備最佳銳鈦礦晶型,而後再利用氨氣修飾二氧化鈦奈米纖維,使氮摻雜二氧化鈦奈米纖維,可以吸收可見光, 提高光能使用率﹔在適度的偏壓減少電子電洞對的結合下進行水分解產氫。利用鍛燒、氨氣改質與適度的偏壓下對於水分解產氫的效率皆有提升。

    In recent years, advanced countries have began to actively search for alternative energy with the oil crisis. Hydrogen energy be paid attention as a next-generation energy carrier in particular. It is inexhaustible from the raw material of hydrogen in water. It does not have pollution problems because the product of hydrogen combustion is water in line with environmental awareness. Fujishima and Honda discovered water splitting on TiO2 electrodes for H2O decomposition into H2 and O2 under ultraviolet light irradiation in 1972. TiO2 is excited to only under ultraviolet light irradiating. How to make use of visible light to utilize the photo energy with only 5% of sunlight for UV and reduce the recombination of the electrons and holes is always the most important issue in the photocatalytic.

    In this study, we use titanium dioxide powder and Ti foil in sodium hydroxide, placed in a pressure reactor in the preparation of high specific surface area of titanium dioxide nanofiber. The synthesis of TiO2 nanofiber has excellent photocurrent at 8hr in the 10 M NaOH at 150℃. TiO2 nanofiber have the best crystalline anatase crystalline in 550℃by air calcination. The doping of a small amount nitrogen into TiO2 nanofiber was performed under a stream of ammonia gas. The N-doped TiO2 showed improved visible light absorption property and increase the energy utilization rate.

    中文摘要………………………………………………………………Ⅰ Abstract………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄………………………………………………………………………V 表目錄……………………………………………………………….…XI 圖目錄…………………………………………………………………XⅡ 第一章 諸論…………………………………………………………….1 1-1 太陽能…………………………………………………………….1 1-2 氫能綠色能源…………………………………………………….2 1-3 氫能生產方法…………………………………………………….3 1-4 常見的半導體觸媒……………………………………………….4 1-5 二氧化鈦合成方法……………………………………………….7 1-6 二氧化鈦晶體結構………………………………………………10 1-7 改質二氧化鈦光觸媒……………………………………………12 1-7-1 添加非金屬改質…………………………………………….13 1-7-2 添加過鍍金屬元素改質…………………………………….13 1-7-3 添加其他半導體改質……………………………………….14 1-7-4 表面敏化改質……………………………………………….15 第二章 原理…………………………………………………………..16 2-1 水熱法原理……………………………………………………..16 2-1-1 水熱法優點………………………………………………..16 2-1-2 水熱的應用………………………………………………..17 2-1-3 二氧化鈦水熱法條件……………………………………..17 2-2 二氧化鈦電極光電化學產氫機構……………………………..20 2-3 半導體…………………………………………………………..21 2-3-1 本質半導體………………………………………………..23 2-3-2 非本質半導體……………………………………………..24 2-3-3 缺陷半導體…………………………………………………25 2-4 費米能階(Fermi level)…………………………………….27 2-5 半導體電荷傳送與能帶彎曲…………………………………..27 2-6 半導體在光觸媒的應用原理……………………………………28 2-7 光觸媒的光電化學性質………………………………………..31 2-7-1 光電流的產生………………………………………………31 2-7-2 光電化學池………………………………………………..33 2-8 影響光觸媒效率之因素……………………………………………….38 2-9 研究動機與架構…………………………………………………39 第三章 實驗…………………………………………………………41 3-1 實驗藥品及儀器說明…………………………………………..41 3-1-2 實驗儀器…………………………………………………....42 3-2 光電化學反應器………………………………………………..44 3-2-1 光電化學反應系統…………………………………………..44 3-3 光源設備……………………………………………………….45 3-3-1 光源輸出特性 …………………………………………..45 3-3-2 光強度校正………………………………………………46 3-3 水熱合成裝置…………………………………………………..48 3-4 二氧化鈦奈米纖維電極之製備………………………………..48 3-4-1 基材之前的處理…………………………………………..48 3-4-2 水熱合成二氧化鈦奈米纖維…………………………….48 3-4-3 二氧化鈦奈米纖維電極鍛燒…………………………….50 3-4-4 摻雜N二氧化鈦奈米纖維電極…………………………..50 3-5 二氧化鈦奈米纖維特性分析…………………………………….50 3-5-1 晶體結構 XRD……………………………………………..50 3-5-2 晶體結構 拉曼光譜儀…………………………………….53 3-5-3 微結構分析(TEM)………………………………………….54 3-5-4 表面微結構(SEM)………………………………………….54 3-5-5 UV-Visible 分析……………………………………….55 3-5-6 化學分析電子儀分析(ESCA)…………………………..56 3-6 二氧化鈦奈米纖維電極光電特性及產氫……………………….57 3-6-1 二氧化鈦奈米纖維電極光電流量測……………………...57 3-6-2 二氧化鈦奈米纖維電極光電效應水分解產氫……………58 第四章 水熱合成二氧化鈦奈米纖維結果與討論………………….60 4-1二氧化鈦奈米纖維外觀型態分析………………………………..60 4-1-1 水熱時間與二氧化鈦奈米纖維外觀型態分析…………….60 4-1-2水熱濃度與二氧化鈦奈米纖維外觀型態分析………………61 4-1-3 酸洗、水洗與二氧化鈦奈米纖維外觀型態分析與結構組 成…………………………………………………………….61 4-1-4鍛燒溫度與二氧化鈦奈米纖維外觀型態分析………………62 4-2 二氧化鈦奈米纖維對UV/Vis吸收光譜的影響………………..63 4-2-1 鍛燒溫度UV/Vis吸收光譜的影響…………………………63 4-2-2 氮氣參雜二氧化鈦奈米纖維之UV/Vis吸收光譜的影響 ……………………………………………………………….63 4-2-3 氨氣參雜二氧化鈦奈米纖維之UV/Vis吸收光譜的影響 ……………………………………………………………….64 4-3二氧化鈦奈米纖維結構分析…………………………………….64. 4-3-1 二氧化鈦奈米纖維結構分析…………………………....64 4-3-2 鍛燒溫度對二氧化鈦奈米纖維晶體結構影響……………65 4-3-3 酸洗程序對鍛燒後對二氧化鈦奈米纖維晶體結構影 響…………………………………………………………..66 4-4二氧化鈦奈米纖維對化學分析電子儀分析(ESCA)影響………..67 4-4-1 氮氣修飾二氧化鈦奈米纖維對化學分析電子儀分析 (ESCA)影響……………………………………………...67 4-4-2 氨氣修飾二氧化鈦奈米纖維對化學分析電子儀分析 (ESCA)影………………………………………………..67 第五章 二氧化鈦奈米纖維之光電活性與水分解產氫效能………..88 5-1前言………………………………………………………….88 5-1-1 二氧化鈦奈米纖維光電特性與產氫特性分析介紹….88 5-2 二氧化鈦奈米纖維光電活性……………………………….89 5-2-1 水熱時間對二氧化鈦奈米纖維光電流的影響……….89 5-2-2 鍛燒溫度對二氧化鈦奈米纖維對光電流的影響…….90 5-2-3 二氧化鈦奈米纖維之酸洗程序對光電流的影響…….91 5-2-4 電解質影響二氧化鈦奈米纖維光電流的影響……….91 5-2-5 氨氣修飾二氧化鈦奈米纖維對光電流的影響……….92 5-3 二氧化鈦奈米纖維分解水產氫…………………………….93 5-3-1 鍛燒溫度對二氧化鈦奈米纖維分解水產氫影響…….93 5-3-2 外加偏壓對二氧化鈦奈米纖維分解水產氫影響…….94 5-3-3 氨氣修飾二氧化鈦奈米纖維分解水產氫的影響…….94 5-4 鍛燒溫度與氮的摻雜效應對二氧化鈦奈米纖維對ε(%) and STH(%)的影響……………………………………………….95 5-5 結論………………………………………………………….95 第六章 總結與未來工作建議………………………………….....120 6-1 總結……………………………………………………….120 6-2 未來工作建議…………………………………………….121 附錄A…………………………………………………………………122 附錄B………………………………………………………………..123 附錄C…………………………………………………………………124 參考文獻…………………………………………………………..…125 自述……………………………………………………………………131

    參考文獻
    [1] A. Fujishima and K. Honda, Nature, 238 (1972) 37.
    [2] The Hydrogen Economy: Opportunities, Costs, Barriers and R&D
    Needs, National Academy of Engineering, 2004.
    [3] A. John, Science, 285 (1999) 687.
    [4] T. Sskata, and T. Kawai, Academic press,New York,1983.
    [5] K. Rajeshwar, N. R. de Tacconi, and C. R. Chenthamarakshan,Chem.
    Mater,13 (2001) 2765.
    [6] M. R. Prairle, L.R. Evans, B. M. Stange, and S.L. Martinez, Sci Technol, 27 (1993) 1776.
    [7] N. Jaffrezic Renault, P. Pichat, A. Foissy, and R.J. Mercier, Phys.
    Chem,90 (1986) 2733.
    [8] L. Kavan, B.Oregan, A. Kay, and M. Gratzel , J.Electroanal. Chem,
    346 (1993) 291.
    [9] T.Yoko, L. Hu, H. kozuka, and S. Sakka, Thin Solid Films 283 (1996) 188.
    .
    [10] I. Shiyaovskays, and M. Hepel, J.Electrochem.Soc,146 (1999) 243.
    [11] D. Ulrike, Surf. Sci. Rep. 48 (2003) 53.
    [12] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y.Taga, Science
    ,293 (2001) 269–71.
    [13] S. U. M. Khan, M. Al-Shahry, and W.B. Ingler, Science, 297 (2002) 2243.
    [14] L. C. Chen, and T. C. Chou, Ind.Eng.Chem.Res, 33 (1994) 1436.
    [15] K. Tanaka, K. Harada, and S. Murata, Sol.Energy, 36 (1986) 159.
    [16] R. W. Matthews, Aust. J. Chem, 40 (1978) 667.
    [17] L. Hsiao-Ching, and H. Weng-Sing, surface scicene , 253 (1889) 4.
    [18] M. Grätzel , Dye-sensitized solar cells , Journal of Photochemistry and Photobiology,C: Photochemistry, Reviews , 4 (2003) 145–153.
    [19] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino,Niihara, and K.Langmuir, 14 (1998) 3160-3163.
    [20] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan,and L-M. Peng, Appl. Phys.Lett, 79(22) (2001) 3702-3704.
    [21] Q. Chen, W. Zhou, G. Du,and L. M. Peng, Adv. Mater, 14 (17),(2002) 1208-1211.
    [22] S. Zhang, L. M. Peng, Q.Chen, G. H. Du, G. Dawson, and W. Z.Zhou, Phys. Rev. Lett, 91(25) (2003) 2561031-2561034.
    [23] Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacochen, and A. Gedanken, Chem.Commun, (2001) 2616-2617.
    [24] C. H. Lin, H. Chien, J. H. Chao, C-Y. Sheu, Y-C. Y-J. Cheng,Huang, and C. H. Tsai, Catal. Lett, 80(3-4) (2002) 153-159.
    [25] Y. X. Zhang, G. H. Li, Y.X. Jin, J.Zhang, L.D. Zhang, Chem.Phys. Lett, 65 (2002) 300-304.
    [26] B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z.Y.Yang, and N.Wang, Appl. Phys. Lett, 80(2) (2003) 281-283.
    [27] X. Sun, Y. Li, Chem. Eur.J., 9 (2003) 2229-2238.
    [28] R. Ma, Y. Bando, T. Sasaki, Chem. Phys, 380 (2003) 577-582.
    [29] J. Yang, Z. Jin, X. Wang, W. Li,and J. Zhang, Dalton Trans,( 2003) 3898 -301.
    [30] Z. Y. Yuan,and B. L. Su, Colloid Surf.A, 241 (2004) 173-183.
    [31] C. C. Tsai,and H. Teng, Chem.Mater, 16 (2004) 4352-4538.
    [32]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, and F .C . Walsh, J. Mater. Chem,26 (2004) 176
    [33] H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, and J. C. Zhao, J.Am.Chem.Soc,127 (2005) 6730-6736.
    [34] S. Pavasupree, Y. Suzuki, S. Yoshikawa,and R.J. Kawahata, Solid State Chem, 178 (2005) 3110-3116.
    [35] B. Poudel, W. Z. Wang, C. Dames, J. Y. Huang, S. Kunwar, D. Z. Wang, D. Banerjee, G. Chen, and Z. F.Ren, Nanotechnology, 16 (2005) 1935-1940,
    [36] D. Wu, J. Liu, N. Ming, Chem. Mater ,18 (2006) 1124-1129,.
    [37] Y. V. Kolenko, K. A . Kovnir, A. V. Garshev, Phys. Chem.B,110 (2006) 4030-4038.
    [38] S. M. Sze, Semiconductor Devices,Physics and Technology, chap.1,
    John Wiley and Sons,Inc, New York, 1985.
    [39] L.H. Van Vlack, Elements of Materials Science and Engineer,chap.
    11,Addison-Wesley Publishing Company,1989.
    [40] H. U. Harten, Helv.Chim.Acta,1255,1972.
    [41] A. Milis, J. Peral, And X. Domenech , J.Mol.Catal, 87 (1994) 67.
    [42] K. Maeda, and K. Domen, J. Phys. Chem. C, 111 (2007) 7851.
    [43] I. Tsuji, H. Kato,and A. Kudo, Chem. Int. Ed, 44 (2005) 3565.
    [44] J. Nowotny, C. C. Sorrell, L. R. Sheppard, and T. Bak, , Int. J. Hydrogen Energy, 30 (2005) 52.
    [45] O. Teschke, joural of appied electrochemistry 12 (1982) 219-223.
    [46] 藤嵨昭、相澤益男及井上徹着,陳震及姚建年譯,蔡生明校,電化學測定分法,北京大學出版社,第64頁
    [47] H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys, 2003.
    [48] D. V. Bavykin, J. M. Friedrich, A. A. Lapkin, Chem.Mater,18 (2006) 1124-1129.
    [49] C. C. Tsai, H. Teng, Chem.Mater, 18 (2006) 367-373.
    [50] Y. Mao,and S. S. Womg, J.Am.Chem.Soc, 128 (2006) 8217-8226.
    [51] I. Tsuji,and H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 109 (2005) 7323–7329.
    [52] A. Fujishima and K. Honda, Nature, 238 (1972) 37 .
    [53] H. Kato and A. Kudo, Catal. Today, 78 (2003) 561 .
    [54] T. Ohno, T. Mitsui, and M. Matsumura, Chem. Lett, 32 (2003) 364.
    [55] Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, and A. Kudo,Chem. Lett, 33 (2004) 28 .
    [56] I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ, 49 (2004).
    [57] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki,and Y. Taga, Science 293 (2001) 269.
    [58] D. Li,and H. Heneda, J. Photochem. Photobiol. A: Chem. 155 (2003) 171.
    [59] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki,and Y. Taga, Science
    293 (2001) 269–71.
    [60] K. Kobayakawa, Y. I. Murakam,and Y. J . Sato, Photochem Photobiol A: Chemistry, 170 (2005) 177–9.
    [61] J. L. Gole, J. D. Stout, C. Burda,and Y. Lou, Phys. Chem. B, 108 (2004) 1230–1240.
    [62] M. Stylidi, D. I. Kondarides, X. E. Verykios, Appl. Catal. B: Environ.40 (2003) 271–286.
    [63] C. Kilic, A. Zunger, Appl. Phys. Lett, 81 (2002) 73–75.
    [64] S. I. Shah, W. Li, C. P. Huang, O. Jung, and C. Ni, Natl. Acad. Sci. 99 (2002) 6482–6486.
    [65] H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka,and P.V. Kamat, J. Phys. Chem. B 110 (2006) 537.
    [66] M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas,and M. Anpo, Chem.Lett. 34 (2005) 16.
    [67] S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto,and B. Ohtani, Phys. Chem. Chem. Phys. 5 (2003) 78.
    [68] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A.
    Kitamura, M. Shimohigoshi, and T. Watanabe, Nature , 431 (1997) 388.
    [69] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc, 125 (2003) 3082.
    [70] P. Ekdunge,and M. Råberg, Int. J. Hydrogen Energy, 23 (1998) 38.
    [71] T. Klaiber, J. Power Sources, 61 (1996) 61.
    [72] B. Höhlein, J. Bøgild-Hansen, P. Bröckerhoff, G. Colsman, B.
    Emonts, R. Menzer,and E. Riedel, J. Power Sources, 61 (1996) 143.
    [73] J. Cunningham,and S. J. Srijaranai, Photochem. Photobiol. A:Chem, 58 (1991) 361-371.
    [74] T. Talahashi, M. Inoue,and T. Kai, Appl.Catal. A, 218 (2001) 189.
    [75] S.Sakthivel,and H. Kisch, Chem. Int.Ed, 42 (2003) 4908.
    [76] R. Asahi, T. Morikawa, T. Ohwaki, K . Aoki and Y. Taga, Science,
    293 (2001) 269–71.
    [77] Y. Suda, H. I. Kawasak, T.I. Ueda, and T. Ohshima. Thin Solid Films, 453–454 (2004) 162–6..
    [78] Q. H. Zhang, L. Gao, and J. K. Guo, J Inorg Mater, 15 (2000) 21–5.
    [79] A. Kudo, K. Omori, H. Kato. J Am Chem Soc, 121 (1999) 1459–61.
    [80] R. R. Bacsa, and J. Kiwi, Appl Catal B, 16 (1998) 19–29.
    [81] R. Asahi, T. Morikawa, O. K. Aoki, and Y. Taga, Science, 293 (2001) 269 –271.
    [82] N. B¨uhler, K. Meier, and J. F. Reber, J. Phys. Chem, 88 (1984) 3261–3268.
    [83] J.F. Reber, and K. Meier, J. Phys. Chem. 88 (1984) 5903–5913.
    [84] V. Subramanian, E. Wolf, and P. Kamat, J Phys Chem B;105 (2001) 1439–46.
    [85] T. Ohta, Int J Hydrogen Energy, 25 (2000) 911–7.
    [86] S. Z. Chen, P. Y. Zhang, D. M. Zhuang, and W. P. Zhu, Cata.ommun, 5 (2004) 677–80.
    [87] Z. C. Bi, and H. T. Tien, J Hydrogen Energy, 9(8):717–22, 1984.
    [88] A. Tsujiko, K. Kajiyama, M. Kanaya, K . Murakoshi, and Y. Nakato,
    Chem Soc Jpn, 76 (2003) 1285–90.
    [89] K. Nukumizu, J. Nunoshige, and H. Domen, Chem. Lett. 32 (2003) 196.
    [90] M. C. Yang, T. S. Yang, and M. S. Wong. Thin Sold Films, (2004) 469–470:1–5,
    [91] A. J. Bard, and M. A. Fox, Acc. Chem. Res, 28 (1999) 141-145.
    [92] A. J. Bard, Science, 207 (1980) 139-144.
    [93] A. Fujishima, K. Kohayakawa, and K. J. Honda, Electrochem. Soc, 122, (1975) 1487.
    [94] A. Fujishima, Science, 301 (2003) 1673a.
    [95] A. Fujishima, K. Kohayakawa, and K. J. Honda, Electrochem. Soc, 122 (1975) 1487.
    [96] V. N. Kuznetsov, and N. Serpone, J. Phys. Chem. B 110 (2006) 5203.
    [97] Q . Ye, P. Y. Liu, Z. F. Tang, and L. Zhai, Vacuum 81 ,( 2007) 27.
    [98] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, and J. Zhao, EnViron. Sci. Technol. 39 (2005) 1175.
    [99] E. arborini, A. M. Conti, I. Kholmanov, P. Piseri, A. Podesta, P.
    Milani, C. Cepek, O. Sakho, R. Macovez, and M. Sancrotti, AdV.
    Mater, 17 (2005) 1842-1846.
    [100] C. Santato, and M. Ulmann, J. J. Augustynski, Phys. Chem. B, 105 (2001) 936-940.
    [101] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, Nature, 440 (2006) 295.
    [102] K. Maeda, and K. J. Domen, Phys. Chem. C 111 (2007) 7851.
    [103] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, Domen, K. Angew. Chem., Int. Ed. 45 (2006) 7806.
    [104] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N.Kondo,and K. Domen, Chem. Commun, 357 (1998).
    [105] 陳龍泉, 國立成功大學化學工程學系博士論文, 1993
    [106] 孫志誠, 國立成功大學化學工程學系博士論文, 1999
    [107] 蘇昱帆, 國立成功大學化學工程學系博士論文, 2005
    [108] I. suji, H.Kato, H. Kobayashi, and A.Kudo, J. Am. Chem. Soc, 126 004) 3406.
    [109] S. C.Moon, Y. Matsumura, M.Kitano, M. Matsuoka, and M. Anpo, Res. Chem. Intermed, 29 (2003) 233.
    [110] Mills, A; Hunte, S. L.J.Photochem.Photobiol.A.Chem,1081 (1997)
    [111] http://eleaining.stut.edu.tw/caster/3/no3/3-4.htm.2009
    [112] http://mse.nthu.edu.tw/~jch/surface/report/873480/esca.htm
    [113] E. Pelizzetti, M. Visca ,Energy Resourcesthrough Photochemistry
    and Catalysis, Academic Press, 263 ,1983.
    [114] X. Quan, S. G. Yang, X. L. Ruan, and H. Zhao,Environmental
    Science and Technology, 39 (2005).
    [115] A.John Turner,Science, 285 (1999) 687.
    [116] V.V.Yakovlev,G.Scarel,and C.R. Aita, S. Mochizuki, Applied
    Physici Letters, 76 (2000) 1107-1109.

    無法下載圖示 校內:2108-08-26公開
    校外:2108-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE