| 研究生: |
陳泰佑 Chen, Tai-you |
|---|---|
| 論文名稱: |
水熱法合成二氧化鈦奈米纖維修飾電極應用於可見光分解水 Hydrothermal Synthesis of TiO2 Nanofiber Modified Electrode for Visible Light Water Splitting |
| 指導教授: |
周澤川
Chou, Tse-chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 二氧化鈦奈米纖維 、可見光 、分解水 、水熱法 |
| 外文關鍵詞: | hydrothermal, water splitting, visible light, TiO2 nanofiber |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著石油危機,油價飆漲,先進國家開始積極尋找替代能源,氫能尤其受到重視。因為氫能的原料可取用於水,取之不盡,用之不竭且不會有環境污染問題,因為氫燃燒後的產物是水,符合環保意識。1972年Fujishima與Honda在光觸媒二氧化鈦表面上照光,進行水分解生成氧氣及氫氣,由於二氧化鈦光觸媒需經紫外光照射,才能激發電子-電洞對,利用激發的電子還原水產氫。由於太陽光只有5%為紫外光,如何利用其於可見光波段吸收激發電子電洞對與減少被光激發的電子電洞對在結合是本研究重要的課題。
本研究方式利用二氧化鈦粉末與鈦片在氫氧化鈉中,置入於壓力釜中製備出高比表面積的二氧化鈦奈米纖維,在水熱溫度150℃,水熱時間八小時,可以製備出最佳二氧化鈦奈米纖維光電活性。經550℃空氣鍛燒提高結晶性且具備最佳銳鈦礦晶型,而後再利用氨氣修飾二氧化鈦奈米纖維,使氮摻雜二氧化鈦奈米纖維,可以吸收可見光, 提高光能使用率﹔在適度的偏壓減少電子電洞對的結合下進行水分解產氫。利用鍛燒、氨氣改質與適度的偏壓下對於水分解產氫的效率皆有提升。
In recent years, advanced countries have began to actively search for alternative energy with the oil crisis. Hydrogen energy be paid attention as a next-generation energy carrier in particular. It is inexhaustible from the raw material of hydrogen in water. It does not have pollution problems because the product of hydrogen combustion is water in line with environmental awareness. Fujishima and Honda discovered water splitting on TiO2 electrodes for H2O decomposition into H2 and O2 under ultraviolet light irradiation in 1972. TiO2 is excited to only under ultraviolet light irradiating. How to make use of visible light to utilize the photo energy with only 5% of sunlight for UV and reduce the recombination of the electrons and holes is always the most important issue in the photocatalytic.
In this study, we use titanium dioxide powder and Ti foil in sodium hydroxide, placed in a pressure reactor in the preparation of high specific surface area of titanium dioxide nanofiber. The synthesis of TiO2 nanofiber has excellent photocurrent at 8hr in the 10 M NaOH at 150℃. TiO2 nanofiber have the best crystalline anatase crystalline in 550℃by air calcination. The doping of a small amount nitrogen into TiO2 nanofiber was performed under a stream of ammonia gas. The N-doped TiO2 showed improved visible light absorption property and increase the energy utilization rate.
參考文獻
[1] A. Fujishima and K. Honda, Nature, 238 (1972) 37.
[2] The Hydrogen Economy: Opportunities, Costs, Barriers and R&D
Needs, National Academy of Engineering, 2004.
[3] A. John, Science, 285 (1999) 687.
[4] T. Sskata, and T. Kawai, Academic press,New York,1983.
[5] K. Rajeshwar, N. R. de Tacconi, and C. R. Chenthamarakshan,Chem.
Mater,13 (2001) 2765.
[6] M. R. Prairle, L.R. Evans, B. M. Stange, and S.L. Martinez, Sci Technol, 27 (1993) 1776.
[7] N. Jaffrezic Renault, P. Pichat, A. Foissy, and R.J. Mercier, Phys.
Chem,90 (1986) 2733.
[8] L. Kavan, B.Oregan, A. Kay, and M. Gratzel , J.Electroanal. Chem,
346 (1993) 291.
[9] T.Yoko, L. Hu, H. kozuka, and S. Sakka, Thin Solid Films 283 (1996) 188.
.
[10] I. Shiyaovskays, and M. Hepel, J.Electrochem.Soc,146 (1999) 243.
[11] D. Ulrike, Surf. Sci. Rep. 48 (2003) 53.
[12] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y.Taga, Science
,293 (2001) 269–71.
[13] S. U. M. Khan, M. Al-Shahry, and W.B. Ingler, Science, 297 (2002) 2243.
[14] L. C. Chen, and T. C. Chou, Ind.Eng.Chem.Res, 33 (1994) 1436.
[15] K. Tanaka, K. Harada, and S. Murata, Sol.Energy, 36 (1986) 159.
[16] R. W. Matthews, Aust. J. Chem, 40 (1978) 667.
[17] L. Hsiao-Ching, and H. Weng-Sing, surface scicene , 253 (1889) 4.
[18] M. Grätzel , Dye-sensitized solar cells , Journal of Photochemistry and Photobiology,C: Photochemistry, Reviews , 4 (2003) 145–153.
[19] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino,Niihara, and K.Langmuir, 14 (1998) 3160-3163.
[20] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan,and L-M. Peng, Appl. Phys.Lett, 79(22) (2001) 3702-3704.
[21] Q. Chen, W. Zhou, G. Du,and L. M. Peng, Adv. Mater, 14 (17),(2002) 1208-1211.
[22] S. Zhang, L. M. Peng, Q.Chen, G. H. Du, G. Dawson, and W. Z.Zhou, Phys. Rev. Lett, 91(25) (2003) 2561031-2561034.
[23] Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacochen, and A. Gedanken, Chem.Commun, (2001) 2616-2617.
[24] C. H. Lin, H. Chien, J. H. Chao, C-Y. Sheu, Y-C. Y-J. Cheng,Huang, and C. H. Tsai, Catal. Lett, 80(3-4) (2002) 153-159.
[25] Y. X. Zhang, G. H. Li, Y.X. Jin, J.Zhang, L.D. Zhang, Chem.Phys. Lett, 65 (2002) 300-304.
[26] B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z.Y.Yang, and N.Wang, Appl. Phys. Lett, 80(2) (2003) 281-283.
[27] X. Sun, Y. Li, Chem. Eur.J., 9 (2003) 2229-2238.
[28] R. Ma, Y. Bando, T. Sasaki, Chem. Phys, 380 (2003) 577-582.
[29] J. Yang, Z. Jin, X. Wang, W. Li,and J. Zhang, Dalton Trans,( 2003) 3898 -301.
[30] Z. Y. Yuan,and B. L. Su, Colloid Surf.A, 241 (2004) 173-183.
[31] C. C. Tsai,and H. Teng, Chem.Mater, 16 (2004) 4352-4538.
[32]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, and F .C . Walsh, J. Mater. Chem,26 (2004) 176
[33] H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, and J. C. Zhao, J.Am.Chem.Soc,127 (2005) 6730-6736.
[34] S. Pavasupree, Y. Suzuki, S. Yoshikawa,and R.J. Kawahata, Solid State Chem, 178 (2005) 3110-3116.
[35] B. Poudel, W. Z. Wang, C. Dames, J. Y. Huang, S. Kunwar, D. Z. Wang, D. Banerjee, G. Chen, and Z. F.Ren, Nanotechnology, 16 (2005) 1935-1940,
[36] D. Wu, J. Liu, N. Ming, Chem. Mater ,18 (2006) 1124-1129,.
[37] Y. V. Kolenko, K. A . Kovnir, A. V. Garshev, Phys. Chem.B,110 (2006) 4030-4038.
[38] S. M. Sze, Semiconductor Devices,Physics and Technology, chap.1,
John Wiley and Sons,Inc, New York, 1985.
[39] L.H. Van Vlack, Elements of Materials Science and Engineer,chap.
11,Addison-Wesley Publishing Company,1989.
[40] H. U. Harten, Helv.Chim.Acta,1255,1972.
[41] A. Milis, J. Peral, And X. Domenech , J.Mol.Catal, 87 (1994) 67.
[42] K. Maeda, and K. Domen, J. Phys. Chem. C, 111 (2007) 7851.
[43] I. Tsuji, H. Kato,and A. Kudo, Chem. Int. Ed, 44 (2005) 3565.
[44] J. Nowotny, C. C. Sorrell, L. R. Sheppard, and T. Bak, , Int. J. Hydrogen Energy, 30 (2005) 52.
[45] O. Teschke, joural of appied electrochemistry 12 (1982) 219-223.
[46] 藤嵨昭、相澤益男及井上徹着,陳震及姚建年譯,蔡生明校,電化學測定分法,北京大學出版社,第64頁
[47] H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys, 2003.
[48] D. V. Bavykin, J. M. Friedrich, A. A. Lapkin, Chem.Mater,18 (2006) 1124-1129.
[49] C. C. Tsai, H. Teng, Chem.Mater, 18 (2006) 367-373.
[50] Y. Mao,and S. S. Womg, J.Am.Chem.Soc, 128 (2006) 8217-8226.
[51] I. Tsuji,and H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 109 (2005) 7323–7329.
[52] A. Fujishima and K. Honda, Nature, 238 (1972) 37 .
[53] H. Kato and A. Kudo, Catal. Today, 78 (2003) 561 .
[54] T. Ohno, T. Mitsui, and M. Matsumura, Chem. Lett, 32 (2003) 364.
[55] Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, and A. Kudo,Chem. Lett, 33 (2004) 28 .
[56] I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ, 49 (2004).
[57] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki,and Y. Taga, Science 293 (2001) 269.
[58] D. Li,and H. Heneda, J. Photochem. Photobiol. A: Chem. 155 (2003) 171.
[59] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki,and Y. Taga, Science
293 (2001) 269–71.
[60] K. Kobayakawa, Y. I. Murakam,and Y. J . Sato, Photochem Photobiol A: Chemistry, 170 (2005) 177–9.
[61] J. L. Gole, J. D. Stout, C. Burda,and Y. Lou, Phys. Chem. B, 108 (2004) 1230–1240.
[62] M. Stylidi, D. I. Kondarides, X. E. Verykios, Appl. Catal. B: Environ.40 (2003) 271–286.
[63] C. Kilic, A. Zunger, Appl. Phys. Lett, 81 (2002) 73–75.
[64] S. I. Shah, W. Li, C. P. Huang, O. Jung, and C. Ni, Natl. Acad. Sci. 99 (2002) 6482–6486.
[65] H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka,and P.V. Kamat, J. Phys. Chem. B 110 (2006) 537.
[66] M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas,and M. Anpo, Chem.Lett. 34 (2005) 16.
[67] S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto,and B. Ohtani, Phys. Chem. Chem. Phys. 5 (2003) 78.
[68] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A.
Kitamura, M. Shimohigoshi, and T. Watanabe, Nature , 431 (1997) 388.
[69] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc, 125 (2003) 3082.
[70] P. Ekdunge,and M. Råberg, Int. J. Hydrogen Energy, 23 (1998) 38.
[71] T. Klaiber, J. Power Sources, 61 (1996) 61.
[72] B. Höhlein, J. Bøgild-Hansen, P. Bröckerhoff, G. Colsman, B.
Emonts, R. Menzer,and E. Riedel, J. Power Sources, 61 (1996) 143.
[73] J. Cunningham,and S. J. Srijaranai, Photochem. Photobiol. A:Chem, 58 (1991) 361-371.
[74] T. Talahashi, M. Inoue,and T. Kai, Appl.Catal. A, 218 (2001) 189.
[75] S.Sakthivel,and H. Kisch, Chem. Int.Ed, 42 (2003) 4908.
[76] R. Asahi, T. Morikawa, T. Ohwaki, K . Aoki and Y. Taga, Science,
293 (2001) 269–71.
[77] Y. Suda, H. I. Kawasak, T.I. Ueda, and T. Ohshima. Thin Solid Films, 453–454 (2004) 162–6..
[78] Q. H. Zhang, L. Gao, and J. K. Guo, J Inorg Mater, 15 (2000) 21–5.
[79] A. Kudo, K. Omori, H. Kato. J Am Chem Soc, 121 (1999) 1459–61.
[80] R. R. Bacsa, and J. Kiwi, Appl Catal B, 16 (1998) 19–29.
[81] R. Asahi, T. Morikawa, O. K. Aoki, and Y. Taga, Science, 293 (2001) 269 –271.
[82] N. B¨uhler, K. Meier, and J. F. Reber, J. Phys. Chem, 88 (1984) 3261–3268.
[83] J.F. Reber, and K. Meier, J. Phys. Chem. 88 (1984) 5903–5913.
[84] V. Subramanian, E. Wolf, and P. Kamat, J Phys Chem B;105 (2001) 1439–46.
[85] T. Ohta, Int J Hydrogen Energy, 25 (2000) 911–7.
[86] S. Z. Chen, P. Y. Zhang, D. M. Zhuang, and W. P. Zhu, Cata.ommun, 5 (2004) 677–80.
[87] Z. C. Bi, and H. T. Tien, J Hydrogen Energy, 9(8):717–22, 1984.
[88] A. Tsujiko, K. Kajiyama, M. Kanaya, K . Murakoshi, and Y. Nakato,
Chem Soc Jpn, 76 (2003) 1285–90.
[89] K. Nukumizu, J. Nunoshige, and H. Domen, Chem. Lett. 32 (2003) 196.
[90] M. C. Yang, T. S. Yang, and M. S. Wong. Thin Sold Films, (2004) 469–470:1–5,
[91] A. J. Bard, and M. A. Fox, Acc. Chem. Res, 28 (1999) 141-145.
[92] A. J. Bard, Science, 207 (1980) 139-144.
[93] A. Fujishima, K. Kohayakawa, and K. J. Honda, Electrochem. Soc, 122, (1975) 1487.
[94] A. Fujishima, Science, 301 (2003) 1673a.
[95] A. Fujishima, K. Kohayakawa, and K. J. Honda, Electrochem. Soc, 122 (1975) 1487.
[96] V. N. Kuznetsov, and N. Serpone, J. Phys. Chem. B 110 (2006) 5203.
[97] Q . Ye, P. Y. Liu, Z. F. Tang, and L. Zhai, Vacuum 81 ,( 2007) 27.
[98] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, and J. Zhao, EnViron. Sci. Technol. 39 (2005) 1175.
[99] E. arborini, A. M. Conti, I. Kholmanov, P. Piseri, A. Podesta, P.
Milani, C. Cepek, O. Sakho, R. Macovez, and M. Sancrotti, AdV.
Mater, 17 (2005) 1842-1846.
[100] C. Santato, and M. Ulmann, J. J. Augustynski, Phys. Chem. B, 105 (2001) 936-940.
[101] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, Nature, 440 (2006) 295.
[102] K. Maeda, and K. J. Domen, Phys. Chem. C 111 (2007) 7851.
[103] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, Domen, K. Angew. Chem., Int. Ed. 45 (2006) 7806.
[104] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N.Kondo,and K. Domen, Chem. Commun, 357 (1998).
[105] 陳龍泉, 國立成功大學化學工程學系博士論文, 1993
[106] 孫志誠, 國立成功大學化學工程學系博士論文, 1999
[107] 蘇昱帆, 國立成功大學化學工程學系博士論文, 2005
[108] I. suji, H.Kato, H. Kobayashi, and A.Kudo, J. Am. Chem. Soc, 126 004) 3406.
[109] S. C.Moon, Y. Matsumura, M.Kitano, M. Matsuoka, and M. Anpo, Res. Chem. Intermed, 29 (2003) 233.
[110] Mills, A; Hunte, S. L.J.Photochem.Photobiol.A.Chem,1081 (1997)
[111] http://eleaining.stut.edu.tw/caster/3/no3/3-4.htm.2009
[112] http://mse.nthu.edu.tw/~jch/surface/report/873480/esca.htm
[113] E. Pelizzetti, M. Visca ,Energy Resourcesthrough Photochemistry
and Catalysis, Academic Press, 263 ,1983.
[114] X. Quan, S. G. Yang, X. L. Ruan, and H. Zhao,Environmental
Science and Technology, 39 (2005).
[115] A.John Turner,Science, 285 (1999) 687.
[116] V.V.Yakovlev,G.Scarel,and C.R. Aita, S. Mochizuki, Applied
Physici Letters, 76 (2000) 1107-1109.
校內:2108-08-26公開