| 研究生: |
陳智維 Chen, Chih-Wei |
|---|---|
| 論文名稱: |
以針狀鎳觸媒搭載動態離心電紡碳纖維於感測器應用 Fabrication of Needle-like Nickel Immobilized on Centrifuged-Electrospinning Carbon Nanofibers for Sensor Applications |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 動態離心電紡絲技術 、奈米碳纖維 、針狀鎳觸媒 、非酵素型電流式感測器 、電流式氣相感測器 |
| 外文關鍵詞: | Needle-like Nickel, Carbon nanofibers, Amperometric non-enzymatic sensors, Centrifuged-electrospinning methodology |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用動態離心電紡絲技術 (Centrifuged-Electrospinning Methodology),製備聚丙烯腈纖維(PAN),並經由1200℃-1500℃的碳化程序製得奈米碳纖維(CNFs)。透過磁場之誘導,於奈米碳纖維固定化成長針狀鎳觸媒(Needle-like Nickel),製成碳纖維/針狀鎳(CNFs-Ni)觸媒感測器材料,並應用於葡萄糖、甲醇、甲醛之非酵素型電流式感測器(Amperometric non-enzymatic sensors)。CNFs經由拉曼光譜(Raman)儀和四點碳針(four-point probe)分析結果顯示,當燒結溫度到達1500℃,其ID/IG比值達0.74且導電度為18.03 Scm-1,證實經由外加離心場之誘導,可使CNFs導電度上升。使用化學分析電子光譜儀(ESCA)、XRD以及掃描式電子顯微鏡(SEM)分析CNFs-Ni表面元素組成及型態結果顯示,CNFs結構上的π-π*鍵結組成百分比隨著燒結溫度上升,針狀鎳均勻的固定化於CNFs的表面。進一步地,藉由電化學分析感測器之性能顯示,在溫度燒結到1400℃ (CNFs1400-Ni)具有最高之靈敏度;其中,在葡萄糖感測的靈敏度(Sensitivity)為6703 μA mM-1cm-2、線性範圍(Linear range)為0.021 mM-0.6 mM (R2=0.9935)、應答時間(Response time)為10秒、再現性(Reproducibility)之相對標準差(Relative standard deviation)為6.97%、穩定度(Stability)為16.94%之偏差值;在甲醇方面,靈敏度為610 μA mM-1cm-2,線性範圍為0.245 mM-1.5 mM (R2=0.9979) ,應答時間為6秒,再現性之相對標準差為4.27%,穩定度為24.13%之偏差值;在甲醛檢測方面,靈敏度為2306 μA mM-1cm-2、線性範圍為0.059 mM-1.5 mM (R2=0.9918)、應答時間為6秒、再現性之相對標準差為8.81%、及穩定度為15.75%之偏差值。另一方面,研究自製電流式氣相感測器(Amperometric gas sensor)來偵測空氣中的甲醛濃度,透過PTFE防水透氣膜,使氣相甲醛擴散進入感測器之中,也使感測器中之電解質NaOH不會洩漏。而電極方面則採用低鎳濃度製備CNFs-Ni 1-8。經由SEM及XRD鑑定,表面針狀鎳型態並無完整包覆住CNFs,這使得溶液內之活性物質能更迅速地進入電極內部,使應答時間大幅下降,也使得電極被充分應用,靈敏度提升。電化學分析結果顯示,CNFs-Ni 1-8其氣相甲醛靈敏度為1.51 μA ppm-1、線性範圍為0.5 ppm-10 ppm(R2=0.9984)、應答時間為5秒;穩定度方面,經過9小時連續測試電流仍無明顯下降趨勢。此結果顯示與其他文獻相比,為具有商業化競爭力之電流式氣相感測器。
The preparation of needle-like nickel immobilized on centrifuged-electrospinning carbon nanofibers (CNFs-Ni) via electroless plating and their applications in amperometric non-enzymatic sensors are described. Poly acrylonitrile (PAN) nanofibers are prepared by centrifuged-electrospinning methodology which can escalate electrical conductivity of carbon nanofibers (CNFs). PAN nanofibers are carbonized in various temperature (1200 ℃-1500 ℃). CNFs are confirmed by scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), Raman spectroscopy and four-point probe. CNFs-Ni are analyzed by SEM, X-ray diffraction (XRD). Under optimal conditions (CNFs1400-Ni), the glucose sensor shows high sensitivity (6703 μA mM-1cm-2), linear range from 0.021 mM to 0.6 mM (R2=0.9935) and fast response time (10 s). As compared to other commercial substrates, the advanced CNFs-Ni electrode exhibits high electrocatalytic activity and good response.
1. Innovation Development MTL., The development of new-generation sensors driven by research and learning-edge SMEs in Montreal. Publications, Spolighted, 2016.
2. Bănică, F.-G., Chemical sensors and Biosensors: Fundamentals and Applications., Wiley, 2012.
3. Bogue, R., Recent developments in MEMS sensors: a review of applications, markets and technologies. Sensor Review, 2013. 33(4): p. 300-304.
4. Sabri, N., S.A. Aljunid, M.S. Salim, R.B. Ahmad, and R. Kamaruddin, Toward Optical Sensors: Review and Applications. Journal of Physics: Conference Series, 2013. 423: p. 012064.
5. Bigas, M., E. Cabruja, J. Forest, and J. Salvi, Review of CMOS image sensors. Microelectronics Journal, 2006. 37(5): p. 433-451.
6. Dey, A., Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 2018. 229: p. 206-217.
7. Stetter, J.R., W.R. Penrose, and S. Yao, Sensors, Chemical Sensors, Electrochemical Sensors, and ECS. Journal of The Electrochemical Society, 2003. 150(2): p. S11.
8. Karpov, E.Е., Е.F. Karpov, А. Suchkov, S. Mironov, A. Baranov, V. Sleptsov, and L. Calliari, Energy efficient planar catalytic sensor for methane measurement. Sensors and Actuators A: Physical, 2013. 194: p. 176-180.
9. Biosensors: Potentiometric and Amperometric. Analytical Chemistry, 1987. 59(18): p. 1091A-1098A.
10. Park, S., H. Boo, and T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal Chim Acta, 2006. 556(1): p. 46-57.
11. Liao, C.-C., C.-C. Wang, C.-Y. Chen, and W.-J. Lai, Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties. Polymer, 2011. 52(10): p. 2263-2275.
12. Kang, K.N., I.H. Kim, A. Ramadoss, S.I. Kim, J.C. Yoon, and J.H. Jang, Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors. Phys Chem Chem Phys, 2018. 20(2): p. 719-727.
13. Taylor, R.F. and J.S. Schultz, Handbook of Chemical and Biological Sensors. 1996.
14. Borman, P. and D. Elder, Q2(R1) Validation of Analytical Procedures. 2017: p. 127-166.
15. Kristjansdottir, K., S. Takahashi, S. L, and S. J, Strategies and Challenges in Measuring Protein Abundance Using Stable Isotope Labeling and Tandem Mass Spectrometry. 2012.
16. Kumsa, D.W., N. Bhadra, E.M. Hudak, S.C. Kelley, D.F. Untereker, and J.T. Mortimer, Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on the i(V e) profile. J Neural Eng, 2016. 13(5): p. 052001.
17. Janata, J., Principles of Chemical Sensors. 2009.
18. Bard, A.J., Electrochemical methods : fundamentals and applications. 1980.
19. Cass, A.E.G., G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, and A.P.F. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984. 56(4): p. 667-671.
20. Heller, A., Electrical wiring of redox enzymes. Accounts of Chemical Research, 1990. 23(5): p. 128-134.
21. Zayats, M., E. Katz, and I. Willner, Electrical Contacting of Glucose Oxidase by Surface-Reconstitution of the Apo-Protein on a Relay-Boronic Acid-FAD Cofactor Monolayer. Journal of the American Chemical Society, 2002. 124(10): p. 2120-2121.
22. Mano, N. and A. Heller, Detection of glucose at 2 fM concentration. Anal Chem, 2005. 77(2): p. 729-32.
23. Yuan, J.H., K. Wang, and X.H. Xia, Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing. Advanced Functional Materials, 2005. 15(5): p. 803-809.
24. Xia, Y., W. Huang, J. Zheng, Z. Niu, and Z. Li, Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron, 2011. 26(8): p. 3555-61.
25. Bai, H., M. Han, Y. Du, J. Bao, and Z. Dai, Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chem Commun (Camb), 2010. 46(10): p. 1739-41.
26. Zhang, Y., F. Xu, Y. Sun, Y. Shi, Z. Wen, and Z. Li, Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. Journal of Materials Chemistry, 2011. 21(42): p. 16949.
27. Sun, A., J. Zheng, and Q. Sheng, A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids. Electrochimica Acta, 2012. 65: p. 64-69.
28. Liu, Y., H. Teng, H. Hou, and T. You, Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron, 2009. 24(11): p. 3329-34.
29. Nuñez, M., Metal Electrodeposition. 2005.
30. Fleischmann, M., K. Korinek, and D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971. 31(1): p. 39-49.
31. McEwen, R.S., Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 1971. 75(12): p. 1782-1789.
32. Pandya, K.I., W.E. O'Grady, D.A. Corrigan, J. McBreen, and R.W. Hoffman, Extended x-ray absorption fine structure investigations of nickel hydroxides. The Journal of Physical Chemistry, 1990. 94(1): p. 21-26.
33. Hall, D.S., D.J. Lockwood, C. Bock, and B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc Math Phys Eng Sci, 2015. 471(2174): p. 20140792.
34. Bode, H., K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat. Electrochimica Acta, 1966. 11(8): p. 1079-IN1.
35. 翁于晴, 乙醇氧化與氧氣還原之電觸媒行為與其在感測器上之應用. 2005, 國立成功大學.
36. Dionigi, F. and P. Strasser, NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Advanced Energy Materials, 2016. 6(23): p. 1600621.
37. Kim, M.-S., A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal Microbalance. Journal of The Electrochemical Society, 1998. 145(2): p. 507.
38. Anton, F., Process and apparatus for preparing artificial threads Google Patents, 1934.
39. Persano, L., A. Camposeo, C. Tekmen, and D. Pisignano, Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromolecular Materials and Engineering, 2013. 298(5): p. 504-520.
40. Matthews, J.A., G.E. Wnek, D.G. Simpson, and G.L. Bowlin, Electrospinning of Collagen Nanofibers. Biomacromolecules, 2002. 3(2): p. 232-238.
41. Zhou, Z., C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, and H. Fong, Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 2009. 50(13): p. 2999-3006.
42. Sun, D., C. Chang, S. Li, and L. Lin, Near-field electrospinning. Nano Lett, 2006. 6(4): p. 839-42.
43. Chang, C., V.H. Tran, J. Wang, Y.K. Fuh, and L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 2010. 10(2): p. 726-31.
44. Theron, S.A., A.L. Yarin, E. Zussman, and E. Kroll, Multiple jets in electrospinning: experiment and modeling. Polymer, 2005. 46(9): p. 2889-2899.
45. Dosunmu, O.O., G.G. Chase, W. Kataphinan, and D.H. Reneker, Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology, 2006. 17(4): p. 1123-7.
46. Jirsak, O., F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. Google Patents, 2005.
47. Niu, H., X. Wang, and T. Lin, Needleless electrospinning: influences of fibre generator geometry. Journal of the Textile Institute, 2012. 103(7): p. 787-794.
48. Lu, B., Y. Wang, Y. Liu, H. Duan, J. Zhou, Z. Zhang, Y. Wang, X. Li, W. Wang, W. Lan, and E. Xie, Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small, 2010. 6(15): p. 1612-6.
49. Liu, Y., L. Dong, J. Fan, R. Wang, and J.-Y. Yu, Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. Journal of Applied Polymer Science, 2011. 120(1): p. 592-598.
50. Badrossamay, M.R., H.A. McIlwee, J.A. Goss, and K.K. Parker, Nanofiber assembly by rotary jet-spinning. Nano Lett, 2010. 10(6): p. 2257-61.
51. Sarkar, K., C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, and K. Lozano, Electrospinning to Forcespinning™. Materials Today, 2010. 13(11): p. 12-14.
52. Xu, C., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-886.
53. Dalton, P.D., D. Klee, and M. Möller, Electrospinning with dual collection rings. Polymer, 2005. 46(3): p. 611-614.
54. Li, D., Y. Wang, and Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters, 2003. 3(8): p. 1167-1171.
55. Deitzel, J., Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 2001. 42(19): p. 8163-8170.
56. Liao, C.-C., S.-S. Hou, C.-C. Wang, and C.-Y. Chen, Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: The effects of molecular motion and conformation in solutions. Polymer, 2010. 51(13): p. 2887-2896.
57. Liao, C.-C., C.-C. Wang, and C.-Y. Chen, Stretching-induced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet. Polymer, 2011. 52(19): p. 4303-4318.
58. Chang, W.-M., C.-C. Wang, and C.-Y. Chen, The combination of electrospinning and forcespinning: Effects on a viscoelastic jet and a single nanofiber. Chemical Engineering Journal, 2014. 244: p. 540-551.
59. Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 2008. 49(10): p. 2387-2425.
60. Liao, C.-C., C.-C. Wang, K.-C. Shih, and C.-Y. Chen, Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: Effects on conformation, crystallinity, and mechanical properties. European Polymer Journal, 2011. 47(5): p. 911-924.
61. Rahaman, M.S.A., A.F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432.
62. Zhu, D., C. Xu, N. Nakura, and M. Matsuo, Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution. Carbon, 2002. 40(3): p. 363-373.
63. Dong, S. and P.K. Dasgupta, Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environmental Science & Technology, 1986. 20(6): p. 637-640.
64. Pashaloo, F., S. Bazgir, M. Tamizifar, M. Faghihisani, and S. Zakerifar, Preparation and Characterization of Carbon Nanofibers via Electrospun PAN Nanofibers. Textile Science and Technology Journal 2009. 13.
65. Jiang, S., Q. Li, Y. Zhao, J. Wang, and M. Kang, Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Composites Science and Technology, 2015. 110: p. 87-94.
66. Hainsworth, S.V. and N.J. Uhure, Diamond like carbon coatings for tribology: production techniques, characterisation methods and applications. International Materials Reviews, 2013. 52(3): p. 153-174.
67. Prilutsky, S., E. Zussman, and Y. Cohen, The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. Nanotechnology, 2008. 19(16): p. 165603.
68. Zhou, C., L. Xu, J. Song, R. Xing, S. Xu, D. Liu, and H. Song, Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep, 2014. 4: p. 7382.
69. 黃建家, 電鍍Ni-Pt薄膜應用於電流式酒精感測器與其電化學行為之研究. 2011, 國立成功大學.
70. Hall, D.S., D.J. Lockwood, S. Poirier, C. Bock, and B.R. MacDougall, Applications of in situ Raman spectroscopy for identifying nickel hydroxide materials and surface layers during chemical aging. ACS Appl Mater Interfaces, 2014. 6(5): p. 3141-9.
71. Hämmerle, M., S. Achmann, and R. Moos, Gas Diffusion Electrodes for Use in an Amperometric Enzyme Biosensor. Electroanalysis, 2008. 20(21): p. 2279-2286.
72. Achmann, S., M. Hammerle, and R. Moos, Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences. Sensors (Basel), 2008. 8(3): p. 1351-1365.
73. Dennison, M.J., J.M. Hall, and A.P.F. Turner, Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. The Analyst, 1996. 121(12): p. 1769.
74. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15-16): p. 2483-2498.
75. González, A., E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
76. Zhang, L.L. and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 2009. 38(9): p. 2520-31.
77. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597.
78. Parveen, N. and M.H. Cho, Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications. Sci Rep, 2016. 6: p. 27318.
79. Hu, G., C. Li, and H. Gong, Capacitance decay of nanoporous nickel hydroxide. Journal of Power Sources, 2010. 195(19): p. 6977-6981.
80. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
81. Chou, W.-J., C.-C. Wang, and C.-Y. Chen, The Improvement of Electrical Property of Multiwalled Carbon Nanotubes with Plasma Modification and Chemical Oxidation in the Polymer Matrix. Journal of Inorganic and Organometallic Polymers and Materials, 2009. 19(2): p. 234-242.
82. Hoyle, C.E. and C.N. Bowman, Thiol-ene click chemistry. Angew Chem Int Ed Engl, 2010. 49(9): p. 1540-73.
83. Lai, C.-C. and C.-T. Lo, Effect of Temperature on Morphology and Electrochemical Capacitive Properties of Electrospun Carbon Nanofibers and Nickel Hydroxide Composites. Electrochimica Acta, 2015. 174: p. 806-814.
84. Zhu, Y., C. Cao, S. Tao, W. Chu, Z. Wu, and Y. Li, Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep, 2014. 4: p. 5787.
85. Jiang, W., D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, and Y. Chen, Ternary Hybrids of Amorphous Nickel Hydroxide-Carbon Nanotube-Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015. 25(7): p. 1063-1073.
86. Tang, Y., Y. Liu, W. Guo, T. Chen, H. Wang, S. Yu, and F. Gao, Highly Oxidized Graphene Anchored Ni(OH)2 Nanoflakes as Pseudocapacitor Materials for Ultrahigh Loading Electrode with High Areal Specific Capacitance. The Journal of Physical Chemistry C, 2014. 118(43): p. 24866-24876.
87. Zhang, L. and H. Gong, A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors. Sci Rep, 2015. 5: p. 18108.
88. Kim, S.I., P. Thiyagarajan, and J.H. Jang, Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition. Nanoscale, 2014. 6(20): p. 11646-52.
89. Bates, C.M., T. Seshimo, M.J. Maher, W.J. Durand, J.D. Cushen, L.M. Dean, G. Blachut, C.J. Ellison, and C.G. Willson, Polarity-switching top coats enable orientation of sub-10-nm block copolymer domains. Science, 2012. 338(6108): p. 775-9.
90. Barra, G.M.O., J.S. Crespo, J.R. Bertolino, V. Soldi, and A.T.N. Pires, Maleic Anhydride Grafting on EPDM: Qualitative and Quantitative Determination. Journal of the Brazilian Chemical Society, 1999. 10(1): p. 31-34.
91. Peng, S., Z. Zeng, W. Zhao, H. Li, J. Chen, J. Han, and X. Wu, Novel functional hybrid silica sol–gel coating for copper protection via in situ thiol–ene click reaction. RSC Adv., 2014. 4(30): p. 15776-15781.
92. Zhang, Y., A.A. Broekhuis, M.C.A. Stuart, T. Fernandez Landaluce, D. Fausti, P. Rudolf, and F. Picchioni, Cross-Linking of Multiwalled Carbon Nanotubes with Polymeric Amines. Macromolecules, 2008. 41(16): p. 6141-6146.
93. Ventura, D.N., Assembly of Multi-walled Carbon Nanotube Mats Through Covalent Cross-Linking. Florida State University Libraries, 2009.
94. Li, H., J. Ma, D.G. Evans, T. Zhou, F. Li, and X. Duan, Molecular Dynamics Modeling of the Structures and Binding Energies of α-Nickel Hydroxides and Nickel−Aluminum Layered Double Hydroxides Containing Various Interlayer Guest Anions. Chemistry of Materials, 2006. 18(18): p. 4405-4414.
校內:2023-08-17公開