簡易檢索 / 詳目顯示

研究生: 孫私于
Sun, Szu-Yu
論文名稱: 應用晶格波茲曼法與場協同理論於流過具障礙物之渠道熱流分析
Lattice Boltzmann method simulation of obstacles inside channel flow with the field synergy principle
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 障礙物晶格波茲曼法渠道流場協同理論熱傳
外文關鍵詞: obstacle, channel flow, heat transfer, field synergy principle, lattice Boltzmann method
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用晶格波茲曼法來模擬低雷諾數、不可壓縮、穩態下之二維渠道流場,藉著置入不同截面形狀的柱體障礙物來分析渠道中障礙物對速度場和溫度場的局部影響。並適當的設定入口的均勻流速度,以確保流場的適用性及避免太大的壓縮效應。

    流體流過兩平板間的障礙物,尤其是柱體,一直是流體力學研究的重要課題,且由於此型態的流動對於在流體流動下的結構設計以及熱傳效應的影響有許多關聯,因此也是工業上應用的重要依據。

    渠道中分別置入不同數量的矩形柱體障礙物、不同頂角角度的三角形柱體障礙物以及有無具旋轉效應的圓形柱體障礙物。柱體障礙物在流場中扮演擾動的角色,改變了流體的流動路線,且障礙物後側形成的環狀迴流區影響了通過之流體,因而增強局部區域內的熱傳。

    同時透過適用於帶有迴流的橢圓型流動之場協同理論來驗證所得到的數值解,說明增加流場的擾動可增進流場與溫度梯度場之間的協同程度,當速度場與溫度梯度場之間的協同角越小其協同程度越好,會有較好的熱傳效果。

    In this study, the lattice Boltzmann method is applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyzes the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cross-section. The inlet velocity is chosen appropriately, so as to ensure the reasonable adaptation of fluid field and to avoid un-physical compressible effect.

    Flow past bluff obstacles between two parallel walls, especially cylinders, have been an important topic of fluid mechanical investigations for a long time. It represents an idealization of many industrially important applications owning to the related technical problems associated with heat transfer and structural design.

    The built-in obstacles in channel include square cylinder of different numbers, triangular cylinder of different vertex angle, stationary circular cylinder and rotational circular cylinder. The cylinder obstacles play the role of causing interruption within the fluid field. The direction of fluid flow toward was changed by cylinder obstacles, and the recirculation region formed behind cylinder obstacles influence the fluid pass through. As mentioned above, heat transfer was enhanced in local region.

    Furthermore, the synergy principle of elliptic flow type is applied to demonstrate that the increased interruption within the fluid increases the synergistic level between the velocity field and temperature gradient field. As the intersection angle between the velocity vector and the temperature gradient vector decreased by inserting cylinder obstacles to fluid field, the results of heat transfer improved significantly.

    摘要…………………………………………………………I ABSTRACT……………………………………………………II 誌謝…………………………………………………………IV 目錄…………………………………………………………VI 表目錄………………………………………………………VIII 圖目錄………………………………………………………IX 符號說明……………………………………………………XIV 第一章、緒論………………………………………………1 1-1 晶格波茲曼法簡介……………………………………1 1-2 晶格波茲曼法文獻回顧………………………………3 1-2-1 晶格波茲曼法之模型演進…………………………4 1-2-2 晶格波茲曼法之邊界處理與網格使用……………5 1-2-3 晶格波茲曼法之熱模型……………………………7 1-3 場協同理論簡介及文獻回顧…………………………9 1-4 研究動機與目的………………………………………10 1-5 本文架構………………………………………………11 第二章、晶格波茲曼法理論………………………………13 2-1 統計力學簡介…………………………………………13 2-1-1 平衡態與非平衡態…………………………………14 2-1-2 波茲曼方程式………………………………………14 2-1-3 流體力學方程式……………………………………15 2-1-4 近平衡過程…………………………………………15 2-1-5 局部平衡假設………………………………………16 2-2 晶格波茲曼法理論……………………………………17 2-2-1 晶格氣體細胞自動機與晶格波茲曼法……………17 2-2-2 連續波茲曼方程式與晶格波茲曼法………………23 2-3 波茲曼方程式之無因次化……………………………29 第三章、場協同理論………………………………………35 3-1 對流熱傳的物理機制…………………………………35 3-2 對流熱傳的場協同原理………………………………37 3-3 橢圓形流動的場協同理論……………………………39 第四章、基本模型與邊界處理方法………………………43 4-1 LBGK模型與巨觀方程式………………………………43 4-2 晶格波茲曼法熱模型…………………………………53 4-2-1 He之熱模型…………………………………………53 4-2-2 Peng之熱模型………………………………………57 4-3 邊界處理方法…………………………………………60 4-3-1 完全反彈邊界………………………………………60 4-3-2 速度與壓力邊界……………………………………61 4-3-3 曲面邊界……………………………………………63 4-3-4 Peng之熱模型邊界…………………………………65 第五章、數值模擬與結果討論……………………………70 5-1 晶格波茲曼法模擬問題的步驟與程式流程…………70 5-2 不具障礙物之渠道內熱流分析………………………71 5-3 具矩形柱體障礙物之渠道內熱流分析………………74 5-4 具三角形柱體障礙物之渠道內熱流分析……………77 5-5 具圓形柱體障礙物之渠道內熱流分析………………80 第六章、結論與展望………………………………………116 6-1 結論……………………………………………………116 6-2 建議與展望……………………………………………117 參考文獻……………………………………………………120

    Abbassi, Hassen, & Turki, Said., & Nasrallah, Sassi Ben., “Numerical investigation of forced convection in a plane channel with a built-in triangular prism”, Int. J. Therm. Sci., Vol. 40, pp. 649-658, 2001.

    Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.

    Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.

    Breuer, M., & Bernsdorf, J., & Zeiser, T., & Durst, F., “Accurate computations of the laminar flow past a square cylinder based on two different method: lattice-Boltzmann and finite-volume”, Int. J. Heat Fluid Flow., Vol. 94(3), pp. 511-525, 2000.

    Chakraborty, Jyoti, & Verma, Nishith, & Chhabra, R. P., “Wall effects in flow past a circular cylinder in a plane channel: a numerical study”, Chem. Eng. Process., Vol. 43, pp. 1529-1537, 2004.

    Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.

    Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.

    Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.

    Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.

    d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.

    Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.

    Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models”, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.

    Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.

    Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.

    Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.

    Guo, Z. Y., & Tao, W. Q., & Shah, R. K., “The field synergy (coordination) principle and its application in enhancing single phase convective heat transfer”, Int. J. Heat Mass Transfer, Vol. 48, pp. 1797-1807, 2005.

    Gupta, Abhishek K., & Sharma, Atul, & Chhabra, Rajendra P., & Eswaran, Vinayak, “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics”, Ind. Eng. Chem. Res., Vol. 42, pp. 5674-5686, 2003.

    He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.

    He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.

    He, Xiaoyi, & Luo, Li-Shi, & Dembo, Micah, “Some progress in lattice Boltzmann method. Part1. Nonuniform mesh grids”, J. Comput. Physics, Vol. 129(2), pp. 357-363, 1996.

    Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.

    Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.

    Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method” , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.

    Huang, Kerson, “Statistical mechanics”, John Wiley & Sons, 1987.

    Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.

    Incropera, Frank P., & DeWitt, David P., “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2002.

    Korichi, Abdelkader, & Oufer, Lounes, “Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls”, Int. J. Therm. Sci., Vol. 44, pp. 644-655, 2005.

    Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.

    McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.

    Mei, Renwei, & Luo, Li-Shi, “An Accurate curved boundary treatment in the lattice Boltzmann method”, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.

    Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics”, Wiley, New York, 1998.

    Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.

    Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp. 026701, 2003.

    Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.

    Shan, Xiaowen, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.

    Shu, C., & Niu, X. D., & Chew, Y. T., “Taylor-series expansion and least-square-based lattice Boltzmann model: Two dimensional fprmulational and its application”, Phys. Rev. E, Vol. 65, pp. 036708, 2002.

    Shu, C., & Peng, Y., & Chew, Y. T., “ Simulation of natural convection in a square cavity by Taylor series expansion and least-square-based lattice Boltzmann method”, Int. J. Mod. Phys. C, Vol. 13, pp. 1399-1414, 2002.

    Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.

    Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford university press, New York, 2001.

    Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.

    Tao, Wen Quan., & Guo, Zeng Yuan., & Wang, Bu Xuan, “Field synergy principle for enhancing convective heat transfer-its extension and numerical verification”, Int. J. Heat Mass Transfer, Vol. 45, pp. 3849-3856, 2002.

    Tao, W. Q., & He, Y. L., & Wang, Q. W., & Qu, Z. G., & Song F. Q., “A unified analysis on enhancing single phase convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 45, pp. 4871-4879, 2002.

    Valencia, Alvaro, “Heat transfer enhancement in a channel with a built-in square cylinder”, Int. Commun. Heat Mass Transf., Vol. 22(1), pp. 47-58, 1995.

    Youngseuk Keehm, & Tapan Mukerji, & Amos Nur, “Computational rock physics at the pore scale: transport properties and diagenesis in realistic pore geometries”, The Leading Edge, Vol. 20(2), pp. 180-183, 2001.

    Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.

    Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.

    Zovatto, Luigino, & Pedrizzetti, Gianni, “Flow about a cylinder between parallel walls”, J. Fluid Mech., Vol. 440, pp. 1-25, 2001.

    王竹溪,「統計物理學導論」,凡異出版社,1985。

    江孟璋,「應用FDLBM方法在高速進給熱傳系統之研究現象」,國立中正大學碩士論文,2003。

    汪志誠,「熱力學與統計物理」,凡異出版社,1996。

    吳大猷,「理論物理-熱力學、氣體運動及統計力學」,聯經出版社,1979。

    祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。

    胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。

    郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。

    張靚妍,「以晶格波茲曼法模擬液滴衝擊平板之變形過程」,國立中正大學碩士論文,2002。

    過增元,「對流換熱的物理機制及其控制:速度與熱流場的協同」,科學通報,第45卷,第9期,pp. 2118-2122,2000。

    過增元、黃素逸,「場協同原理與強化熱傳新技術」,中國電力出版社,2004。

    楊志強,「以晶格波茲曼法模擬共軛熱傳」,國立中正大學碩士論文,2001。

    韓光澤、華責、魏耀東,「傳遞過程強化的新途徑-場協同」,自然雜誌24,273-277,2002。

    顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006。

    下載圖示 校內:2007-07-26公開
    校外:2007-07-26公開
    QR CODE