| 研究生: |
林芷微 Lin, Zhi-Wei |
|---|---|
| 論文名稱: |
可光控發射方向之可撓式液晶複合雷射 Flexible liquid crystal composite laser with light controllable emission direction |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 偶氮苯 、光致異構化 、膽固醇液晶聚合物 、液晶薄膜雷射 |
| 外文關鍵詞: | azobenzene, photoisomerization, cholesteric liquid crystal polymer, liquid crystal film laser |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光為自然界中不可或缺的能源,自古以來一直被廣泛研究其與物質之間交互作用,其中偶氮苯衍生物乃為最常被研究的光響應材料。偶氮苯分子暗態時會處於穩態的棒狀結構(trans態),經由紫外光照射後,其立體結構變為彎曲狀(cis態)。這種特有的光致異構化反應使偶氮苯分子利於應用在諸多光學/光子學領域,例如將偶氮苯摻雜於液晶薄膜中,藉由其獨特的光致形變反應,可使薄膜體積收縮/膨脹甚至產生彎曲。目前已有相關研究應用於發展仿生動植物、人工瞳孔及機器人手臂等。近年來,基於各向異性液晶聚合物的軟致動器由於其高分辨率、快速切換、靈活可控和抗電磁干擾等優點而引起了人們的極大興趣。作為一個新興領域,液晶聚合物軟致動器在機器人、仿生學和光學應用方面具有巨大的潛力。
本論文製備具有三明治結構之兩種不同配方的膽固醇液晶聚合物薄膜,其中一種是全聚合薄膜,另一種是部分聚合薄膜。實驗上分別量測兩種薄膜之光學、熱性質以及光致薄膜形變特性與雷射輸出方向之間關係。實驗結果發現全聚合薄膜雷射閥值較高,故後續採用部分聚合薄膜來執行光控薄膜形變與調控雷射輸出方向。為達最大雷射輸出效率,雷射樣品採三明治結構製法,外面兩側使用摻雜偶氮苯之膽固醇液晶聚合物薄膜作為布拉格反射鏡,利用偶氮苯光致異構化反應可使偶氮分子立體結構於棒狀(trans態)及彎曲狀(cis態)間轉換,進而拉動整個高分子聚合網絡,巨觀上可觀察到薄膜形變;中間層為增益介質之雷射染料混合高分子。當外在光源激發此三明治結構薄膜時,符合共振模態之雷射會以平行液晶螺旋軸方向輸出。搭配紫外光致形變機制,此三明治結構薄膜會朝光源彎曲,致使雷射輸出方向變化。隨著三明治薄膜彎曲角度越大,雷射輸出角度越大(相較於尚未彎曲時雷射輸出方向),最大可達57度。
Light is an indispensable energy source in nature, and its interaction with substances has been extensively studied since ancient times. Among them, azobenzene derivatives are the most commonly-studied light-responsive materials. When the azobenzene molecule is in the dark state, it will be in a stable, rod-like structure (trans state). After being irradiated with light (usually ultraviolet light), its 3D structure becomes curved (cis state). If properly matched with other functional materials (such as liquid crystal elastomers, or LCE), this unique photoisomerization reaction would make azobenzene molecules quite useful for many optical/photonics fields. Through the unique light-induced deformation reaction of LCE, the film can be contracted/expanded or even bent. Relevant research has been applied to the development of imitating animals and plants, artificial pupils, and robotic arms. In recent years, soft actuators based on anisotropic liquid crystal elastomers have attracted great interest due to their high resolution, fast switching, flexible controllability, and resistance to electromagnetic interference. As an emerging field, liquid crystal elastomer soft actuators have great potential in robotics, bionics, and optical applications.
In this thesis, photoresponsive cholesteric liquid crystal elastomer (CLCE) films are prepared. To obtain the maximum laser output efficiency, the laser device has a sandwich structure, including two CLCE films cross-linked with azobenzene as two Bragg reflectors, and a laser dye-doped polymer film as a gain medium. The photoisomerization reaction of azobenzene molecules in the CLCE films can switch between the rod-like trans state and the curved cis state, thus pulling the entire polymer network, and the film deformation can be observed macroscopically. When the sandwich-like film is excited by an external light, the laser conforming to the resonance mode will generate in a direction parallel to the helical axis of the CLCE film. With the UV photo-induced deformation mechanism, the sandwich-like film will bend toward the light source, causing the laser emission direction to be tunable. As the bending angle of the sandwich-like film increases, the laser output angle increases (compared to the laser emission direction when the film is not bent), up to 57°.
1. P. G. de Gennes and J. Prost, The physics of liquid crystals (Clarendon Press, New York, 1993).
2. 田民波 著,林怡欣 校訂,TFT液晶顯示原理與技術 (五南圖書出版公司,台灣,2008).
3. M. Schadt, ''Liquid crystal materials and liquid crystal displays, '' Annu. Rev. Mater. Sci. 27, 305–379 (1997).
4. Y. Huang, M. Jin, and S. Zhang, ''Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystals, '' J. Appl. Phys. 53, 072601 (2014).
5. Y. Huang and S. Zhang, ''Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals,'' Opt. Lett. 36, 4563-4565 (2011).
6. I.A. Yao, C.H. Liaw, J.J. Wu and S.H. Chen, ''Direction-tunable cholesteric phase gratings, '' J. Appl. Phys. 96, 1760-1762 (2004).
7. X. Zhan, H. Fan, Y. Li, Y. Liu and D. Luo, ''Low threshold polymerised cholesteric liquid crystal film lasers with red, green and blue colors,'' Liq. Cryst. 46, 970-976 (2019).
8. M. Moirangthem, R. Arts , M. Merkx and Albertus P. H. J. Schenning, ''An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum,'' Adv. Funct. Mater 26, 1154–1160 (2016).
9. O. M. Wani, R. Verpaalen, H. Zeng, A. Priimagi, and Albert P. H. J. Schenning, ''An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks, '' Adv. Mater. 31, 1805985 (2019).
10. M. Pilz da Cunha, M. G. Debije and A. P. H. J. Schenning, ''Bioinspired light- driven soft robots based on liquid crystal polymers, '' Chem. Soc. Rev. 49, 6568-6578 (2020).
11. S.Y. Cho, H. Yoshida, and M. Ozaki, ''Emission direction-tunable liquid crystal laser, '' Adv. Opt. Mater. 8, 2000375 (2020).
12. C.C. Li, C.W. Chen, C.K. Yu, H.C. Jau, J.A. Lv, Q. Xin, C.F. Lin, C.Y. Cheng, C.Y. Wang, W. Jia, Y.L. Yu, and T.H. Lin, ''Arbitrary beam steering enabled by photomechanically bendable cholesteric liquid crystal polymers,'' Adv. Opt. Mater. 5, 1600824 (2017).
13. A. Varanytsia, H. Nagai, K. Urayama and Peter P. Muhoray, ''Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,'' Sci. Rep. 5, 17739 (2015).
14. A. Varanytsia, H. Nagai, K. Urayama and Peter P. Muhoray, ''Accurate control of laser emission from cholesteric liquid crystal elastomers,''Mol. Cryst. Liq. Cryst. 647, 216-222 (2017).
15. T. Ali, J.D. Lin, B. Snow, X. Wang, St. J. Elston, and St. M. Morris, ''A Thin-Film Flexible Defect-Mode Laser,'' Adv. Opt. Mater. 8, 1901891 (2020).
16. Peter J. Collings and M. Hird., Introduction to liquid crystals chemistry and physics (Taylor & Francis, London, 1997).
17. A.S. Sonin, ''Inorganic lyotropic liquid crystals,'' J. Mater. Chem. 8, 2557–2574 (1998).
18. D. Andrienko, ''Introduction to liquid crystals,'' J. Mol. Liq. 267, 520–541 (2018).
19. H.S. Kitzerow and C. Bahr, Chirality in liquid crystals (Springer, New York, 2001).
20. Eugene Hecht, Optics fifth edition (Pearson, 2017).
21. 苗村省平著,陳建銘 編譯,液晶顯示器技術入門 (全華圖書股份有限公司,台灣,2005).
22. B.E.A Saleh and M.C. Teich, Fundamentals of Photonics (Wiley, 2019).
23. J. Li, C.H. Wen, S. Gauza, R. Lu and S. T. Wu, ''Refractive Indices of Liquid Crystals for Display Applications,'' Journal of display technology 1, 51-61 (2005).
24. F. M. Leslie, ''Continuum theory for nematic liquid crystals,'' Contin. Mech. Thermodyn. 4, 167-175 (1992).
25. C. Binet, M. Mitov and A. Boudet, ''Bragg reflections in cholesteric liquid crystals: from selectivity to broadening and reciprocally,'' Mol. Cryst. Liq. Cryst. 339,111-123 (2006).
26. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.K. Yang, ''Bragg reflection from cholesteric liquid crystals,''Phys. Rev. E 51, 1191-1198 (1995).
27. M. Mitov, ''Cholesteric liquid crystals with a broad light reflection band,'' Adv. Mater. 24, 6260-6276 (2012).
28. D. C. Zografopoulos and E. E. Kriezis, ''Theoretical and experimental optical studies of cholesteric liquid crystal films,'' Phys. Rev. 73, 061701-061709 (2006).
29. V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland,
Deng Ke-Yang, A. Voevodin, T. J. White and T. J. Bunning, ''Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,'' J. Appl. Phys. 110, 053109-0531117 (2011).
28. S. H. Lin, C. Y. Shyu, J. H. Liu, P. C. Yang, T. S. Mo, S. Y. Huang, and C. R. Lee, ''Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,'' Opt. Express 18, 9496-9503 (2010).
29. M. T. Brannum, A. M. Steele, M. C. Venetos, L. T. J. Korley, G. E. Wnek, and T. J. White, ''Light control with liquid crystalline elastomers,'' Adv. Opt. Mater. 7, 1801683 (2019).
30. 松本正一及角田市良 合著,劉瑞祥 譯,液晶之基礎與應用 (國立編譯館,1996).
31. Wim H. de Jeu, Liquid Crystal Elastomers:Materials and Applications (Springer, Germany, 2012).
32. L. Zhu and Christopher Y. Li, Liquid Crystalline Polymers (Springer, Switzerland, 2020).
33. 楊博智,''含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討,''國立成功大學化工研究所碩士論文(2003).
34. T. J. White and D.J. Broer, ''Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,''Nat. Mater. 14, 1087–1098 (2015).
35. H. Stutz, K.‐H. Illers, J. Mertes, ''A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers,'' J. Polym. Sci. B Polym. Phys. 28, 1483-1498 (1990).
36. Henri Bouas-Laurent and Heinz Durr, ''Organic photochromism,'' Pure Appl. Chem. 73, 639–665 (2001).
37. S. Isamu, K. Hiroshi, and I. Eiichi, ''Photoreversible photographic systems. vi. reverse photochromism of 1,3,3-trimethylspiro[indoline-2,2’-benzopyran]-8’-carboxylic acid,''CSJ ser. 42, 1730-1734 (1969).
38. R. Dong , B. Zhu, Y. Zhou, D. Yan and X. Zhu, ''Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light,'' Polym. Chem. 4, 912-915 (2013).
39. Y. Shigeru, O. Hiroshi and T. Osamu, ''The cis-trans photoisomerization of azobenzene,'' CSJ ser. 35, 1849-1853 (1962).
40. D.C. Zografopoulos, E.E. Kriezis, M. Mitov, and C. Binet, ''Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,'' Phys. Rev. E 73, 061701 (2006).
41. A. Emoto, E. Uchida and T. Fukuda, ''Optical and Physical Applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers,'' Polymers 4, 150-186 (2012).
42. Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, ''Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene,''Chem. Mater. 16, 1637-1643 (2004).
43. A. J. Gross and Thomas R. W. Herrmann, ''History of lasers,'' World J. Urol. 25, 217–220 (2007).
44. 呂助增 著,雷射原理與應用 (滄海書局,台灣,2001).
45. Karl F. Renk, Basics of Laser Physics (Springer, Switzerland, 2017).
46. S.C. Singh, H. Zeng, C. Guo and W. Cai, Processing and Characterization with Lasers (Wiley-VCH Verlag & Co. KGaA, Germany, 2012).
47. M. Eichhorn, Laser Physics (Springer, Switzerland, 2014).
48. 楊國輝及黃宏彥 編著,雷射原理與量測概論 (五南圖書出版公司,台灣,2001).
49. H. Kogelnik and C. V. Shank, ''Coupled-wave theory of distributed feedback lasers,'' J. Appl. Phys. 43, 2327-2335 (1972).
50. H. Kogelnik and C. V. Shank, ''Stimulated emission in a periodic structure,'' Appl. Phys. Lett. 18, 152-154 (1971).
51. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, ''Single mode optofluidic distributed feedback dye laser,'' Opt. Express 14, 696-701 (2006).
52. T.H. Lin, H.C. Jau, C.H. Chen, Y.J. Chen, T.H. Wei , C.H. Chen and Andy Y.-G. Fuh , ''Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,''Appl. Phys. Lett. 88, 061122 (2006).
53. J. Xianga, A. Varanytsiaa, F. Minkowskia, D. A. Patersonc, J. M. D. Storeyc, C.T. Imriec, O. D. Lavrentovicha and Peter P. Muhoray, ''Electrically tunable laser based on oblique heliconical cholesteric liquid crystal,'' PNAS 113, 12925-12928 (2016).
54.M.Y. Je ong and K. Kwak, ''Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal,'' Appl. Opt. 55, 9378-9383 (2016).
55. Y. Huang, Y. Zhou, C. Doyle, and S.T. Wu, ''Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,'' Opt. Express 14, 1236-1242 (2006).
56. T.H. Lin, Y.J. Chen, C.H. Wu, Andy Y.-G. Fuha, J.-H. Liu and P.-C. Yang, ''Cholesteric liquid crystal laser with wide tuning capability,'' Appl. Phys. Lett. 86, 161120 (2005).
57. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, R. Barberi, ''Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,'' Opt. Express 17, 4553-4558 (2009).
58. J.H. Lin, P.Y. Chen, and J.J. Wu, ''Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,'' Opt. Express 22, 9932-9941 (2014).
59.D. M. Soumpasis, ''Theoretical analysis of fluorescence photobleaching recovery experiments,'' Biophys. J. 41 , 95-97 (1983).
60. T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, ''Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,'' Appl. Phys. Lett. 81, 3741-3743 (2002).
61. H. Finkelmann, S.T. Kim, A. Muæoz, Peter P. Muhoray, and Bahman Taheri, ''Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,'' Adv. Mater. 13, 1069-1072 (2001).
62. T. Ali, J.D. Lin, Y. Shi, St. J. Elston, and St. M. Morris, ''Developing flexible liquid crystal defect mode lasers,'' SPIE Pro. 11303, 113030Q (2020).
63. J. Schmidtke, W. Stille, and H. Finkelmann, ''Defect mode emission of a dye doped cholesteric polymer network,'' Phys. Rev. Lett. 90, 083902 (2003).
64. Y.C. Yang, C.S. Kee, J.E. Kim, and H.Y. Park, ''Photonic defect modes of cholesteric liquid crystals,'' Phys. Rev. E 60, 6852-6854 (1999).
65. H. Yoshida, C. H. Lee, Y. Matsuhisa, A. Fujii, and M. Ozaki, ''Bottom-up fabrication of photonic defect structures in cholesteric liquid crystals based on laser-assisted modification of the helix,'' Adv. Mater. 19, 1187–1190 (2007).