簡易檢索 / 詳目顯示

研究生: 莊琬琳
Chuang, Wan-Lin
論文名稱: 人工牙根材料光動力療法之研究
The Effects of Photodynamic Therapy on Bacteria Reduction for Dental Implant Application
指導教授: 李澤民
Lee, Tzer-Min
共同指導教授: 張志涵
Chang, Chih-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 107
中文關鍵詞: 人工牙根牙根周圍炎抗菌光動力療法
外文關鍵詞: Dental implants, Peri-implantitis, Anti-bacterial test, Photodynamic therapy
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來人工牙根的植入越來越普及,但伴隨著術前計畫不夠完善、患者口腔衛生習慣不佳等原因,仍可能導致牙根周圍炎的情況發生。近年來因牙根植體形狀逐漸多樣化、抗生素的濫用及細菌耐藥性增加,令傳統機械方式與抗生素之治療成效日漸不彰。為能達到有效的殺菌效果,光動力療法 (Photodynamic therapy, PDT) 已逐漸成為新興的牙根周圍炎治療方式。本研究主要分為材料表面之抗菌試驗及光動力療法。首先在抗菌試驗部分,分別製備P、SB、SLA、MAO和5SrMAO等五種不同表面處理之鈦基材,並於試片上培養Escherichia coli (E. coli) 與 Porphyromonas gingivalis (P. gingivalis),探討不同表面條件下材料之抗菌能力。同時針對光動力療法於懸浮培養及不同材料表面之殺菌效果進行研究,並觀察光動力療法對細胞毒性之影響。由SEM與Optical density實驗結果發現,低的表面自由能、粗糙度以及含有鍶元素之材料表面具有較少的細菌貼附量。而經過光動力療法實驗後,發現不論在懸浮培養以及試片培養上,E. coli與P. gingivalis之存活率明顯下降至60 % 與20 %,且不論在平坦或粗糙的試片上,皆可達到相同之殺菌效果。綜合研究結果,顯示光動力療法在各表面形態下皆有一致的殺菌效果,同時也能有效的對細菌造成毒殺作用,故未來在牙科臨床上,將有其參考價值。

    There is a growing popularity of dental implants in the market. With the poor oral hygiene, imperfect plan of pre-operation, patient with smoking or periodontal disease may lead to peri-implantitis. With the variety of screw shape and resistance-related bacteria, photodynamic therapy (PDT) becomes a new treatment for peri-implantitis.
    In this study, two types of Gram-negative bacteria would be chose, including Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis). These bacterial were be used to research the anti-bacterial properties and combined with Toluidine Blue O (TBO) to perform photodynamic therapy. First, the titanium discs with different surface morphology would be prepared such as Polish, SB, SLA, MAO, and 5SrMAO to discuss the anti-bacterial properties. Then, we used the PDT to study the bactericidal effect of suspension, biofilm system and cytotoxicity of cells.
    From the SEM and optical density results showed that with low surface-free energy, low surface roughness, and surface containing strontium ion would reduce plaque accumulation in our anti-bacterial tests. In the PDT experiments, the results indicated that the survival rate of bacteria would decrease after PDT no matter on E. coli or P. gingivalis system and suspension or biofilm system. Then, PDT showed no significant difference between each groups of titanium discs. In sum, this study can conclude that strontium ion can inhibit the growth of bacterial and PDT will become a potential treatment for peri-implantitis in the future.

    Abstract I 中文摘要 III 誌謝 IV Contents V Chapter 1 Introduction 1 1.1 Background 1 1.2 Dental titanium 2 1.3 Surface modification of dental implants 3 1.4 Peri-implantitis 5 1.5 Clinical treatments of peri-implantitis 7 1.6 Photodynamic therapy 9 1.7 Motivation and objective 14 Chapter 2 Materials and Methods 15 2.1 Experimental procedure 15 2.2 Specimen preparation 15 2.2.1 Titanium substrates 15 2.2.2 Polish 16 2.2.3 Sandblasted 16 2.2.4 Sandblasted and acid-etched 16 2.2.5 Micro-arc oxidized 17 2.3 Specimens surface characteristic analysis 17 2.3.1 Surface morphology (SEM/EDS) 17 2.3.2 Surface phase composition analysis 18 2.3.3 Surface roughness 18 2.3.4 Surface wettability 18 2.4 In vitro tests 19 2.4.1 Cell culture 19 2.4.2 Bacterial culture 19 2.4.3 Bacterial growth curve 19 2.4.4 Samples sterilization 20 2.4.5 Bacterial adhesion and proliferation 20 2.4.6 Bacterial immobilization 21 2.5 Photodynamic therapy 22 2.6 Cells photodynamic therapy (MTT assay) 23 2.7 Statistical analysis 24 Chapter 3 Results 25 3.1 Specimens surface characteristic analysis 25 3.1.1 Surface morphology 25 3.1.2 Surface chemical composition analysis 25 3.1.3 Surface phase composition analysis 26 3.1.4 Surface roughness 26 3.1.5 Surface wettability 27 3.2 In vitro test 27 3.2.1 Bacterial growth curve 27 3.2.2 The best parameters of bacterial adhesion 27 3.2.3 Bacterial adhesion 28 3.2.4 Bacterial proliferation 29 3.3 Photodynamic therapy 30 3.3.1 Spectrum analysis of bacterial and TBO 30 3.3.2 Concentration of TBO 31 3.3.3 Antimicrobial photodynamic therapy 31 3.3.4 Cell photodynamic therapy 34 Chapter 4 Discussion 35 Chapter 5 Conclusions 40 Reference 43

    [1] Ackroyd, R., C. Kelty, N. Brown, and M. Reed, The History of Photodetection and Photodynamic Therapy. Photochemistry and photobiology, 2001. 74(5): p. 656-669.
    [2] Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nature Reviews Cancer, 2003. 3(5): p. 380-387.
    [3] Van der Meij, E.H., K.-P. Schepman, and I. van der Waal, The possible premalignant character of oral lichen planus and oral lichenoid lesions: a prospective study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2003. 96(2): p. 164-171.
    [4] Aghahosseini, F., F. Arbabi-Kalati, L. Ataie Fashtami, G. Esmaeeli Djavid, M. Fateh, J. Momen Beitollahi, Methylene blue‐mediated photodynamic therapy: A possible alternative treatment for oral lichen planus. Lasers in surgery and medicine, 2006. 38(1): p. 33-38.
    [5] Takasaki, A.A., Aoki, A., Mizutani, K., Schwarz, F., Sculean, A., Wang, C-Y., Koshy, G., Romanos, G., Ishikawa, I., and Izumi, Y., Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 2000, 2009. 51: p. 109-40.
    [6] Soukos, N.S. and J.M. Goodson, Photodynamic therapy in the control of oral biofilms. Periodontology 2000, 2011. 55(1): p. 143-166.
    [7] Meyer, M., P. Speight, and S. Bown, A study of the effects of photodynamic therapy on the normal tissues of the rabbit jaw. British journal of cancer, 1991. 64(6): p. 1093-1097.
    [8] Meisel, P. and T. Kocher, Photodynamic therapy for periodontal diseases: state of the art. Journal of Photochemistry and Photobiology B, 2005. 79(2): p. 159-70.
    [9] Webber, J., Herman, M., Kessel, D., and Fromm, D., Current concepts in gastrointestinal photodynamic therapy. Annals of surgery, 1999. 230(1): p. 12.
    [10] Shidid, D.P., Hoseinpour Gollo, M., Brandt, M., Mahdavian, and M., Study of effect of process parameters on titanium sheet metal bending using Nd: YAG laser. Optics & Laser Technology, 2013. 47(0): p. 242-247.
    [11] Titanium. Encyclopadia Britannica, 2006.
    [12] Branemark, P.-I., Osseointegration and its experimental background. The Journal of prosthetic dentistry, 1983. 50(3): p. 399-410.
    [13] Li, Y., Zou, S., Wang, D., Feng, G., Bao, C., and Hu, J., The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Biomaterials, 2010. 31(12): p. 3266-3273.
    [14] Mellado-Valero, A., Buitrago-Vera, P., Sola-Ruiz, M. F., and Ferrer-Garcia, J. C., Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oral Cir Bucal, 2013. 18(6): p. e869-76.
    [15] Misch, C.E., Dental implant prosthetics. 2004: Elsevier Health Sciences.
    [16] Liu, X., P.K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004. 47(3–4): p. 49-121.
    [17] Puippe, J.C., Surface treatments of titanium implants. European Cells and Materials, 2003. 5(1): p. 32-33.
    [18] Brunette, D.M., Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. 2001: Springer.
    [19] Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y., Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 2007. 23(7): p. 844-854.
    [20] Yang, Y., K.-H. Kim, and J.L. Ong, A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials, 2005. 26(3): p. 327-337.
    [21] De Groot, K., Geesink, R., Klein, CPAT., and Serekian, P., Plasma sprayed coatings of hydroxylapatite. Journal of biomedical materials research, 1987. 21(12): p. 1375-1381.
    [22] Sittig, C., Textor, M., Spencer, ND., Wieland, M., and Vallotton, PH., Surface characterization. Journal of Materials Science: Materials in Medicine, 1999. 10(1): p. 35-46.
    [23] Massaro, C., Rotolo, P., De Riccardis, F., Milella, E., Napoli, A., Wieland, M., Textor, M., Spencer, ND., and Brunette, DM., Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 2002. 13(6): p. 535-548.
    [24] Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., and Landolt, D., Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 2004. 25(14): p. 2695-2711.
    [25] Nie, X., A. Leyland, and A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology, 2000. 125(1): p. 407-414.
    [26] Li, L.-H., Kong, Y.-M., Kim, H.-W., Kim, Y.-W., Kim, H.-E., Heo, S.-J., and Koak, J.-Y., Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 2004. 25(14): p. 2867-2875.
    [27] Guangliang, Y., Xianyi, L., Yizhen, B., Haifeng, C., and Zengsun, J., The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Journal of Alloys and Compounds, 2002. 345(1): p. 196-200.
    [28] Song, W.-H., H.-S. Ryu, and S.-H. Hong, Antibacterial properties of Ag (or Pt)‐containing calcium phosphate coatings formed by micro‐arc oxidation. Journal of Biomedical Materials Research Part A, 2009. 88(1): p. 246-254.
    [29] Lin, D.-J., Tsai, M.-T., Shieh, T.-M., Huang, H.-L., Hsu, J.-T., Ko, Y.-C., and Fuh, L.-J., In vitro antibacterial activity and cytocompatibility of bismuth doped micro-arc oxidized titanium. Journal of biomaterials applications, 2013. 27(5): p. 553-563.
    [30] Zhao, L., Chu, P.-K., Zhang, Y., and Wu, Z., Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 91(1): p. 470-80.
    [31] Liao, J., Anchun, M., Zhu, Z., and Quan, Y., Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. International journal of nanomedicine, 2010. 5: p. 337.
    [32] Berglundh, T., L. Persson, and B. Klinge, A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. Journal of Clinical Periodontology, 2002. 29 Suppl 3: p. 197-212.
    [33] Prathapachandran, J. and N. Suresh, Management of peri-implantitis. Dental research journal, 2012. 9(5): p. 516-521.
    [34] Amoroso, P.F., Adams, R. J., Waters, M. G., and Williams, D. W., Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: an in vitro study. Clinical Oral Implants Research, 2006. 17(6): p. 633-7.
    [35] Burgers, R., Witecy, C., Hahnel, S., and Gosau, M., The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Archives of Oral Biology, 2012. 57(7): p. 940-7.
    [36] Jovanovic, S.A., The management of peri-implant breakdown around functioning osseointegrated dental implants. Journal of Periodontology, 1993. 64(11 Suppl): p. 1176-83.
    [37] Mombelli, A. and N.P. Lang, The diagnosis and treatment of peri‐implantitis. Periodontology 2000, 1998. 17(1): p. 63-76.
    [38] Renvert, S., A.M. Roos‐Jansåker, and N. Claffey, Non‐surgical treatment of peri‐implant mucositis and peri‐implantitis: a literature review. Journal of Clinical Periodontology, 2008. 35(s8): p. 305-315.
    [39] Hauser‐Gerspach, I., S. Stübinger, and J. Meyer, Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clinical Oral Implants Research, 2010. 21(3): p. 277-283.
    [40] Doungudomdacha, S., Rawlinson, A., Walsh, TF., and Douglas, CWI., Effect of non‐surgical periodontal treatment on clinical parameters and the numbers of Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans at adult periodontitis sites. Journal of clinical periodontology, 2001. 28(5): p. 437-445.
    [41] Heydenrijk, K., Meijer, H., Van der Reijden, W., Raghoebar, G., Vissink, A., and Stegenga, B., Microbiota around root-form endosseous implants: a review of the literature. The International journal of oral & maxillofacial implants, 2001. 17(6): p. 829-838.
    [42] Mouhyi, J., Sennerby, L., Pireaux, J., Dourov, N., Nammour, S., and Van Reck, J., An XPS and SEM evaluation of six chemical and physical techniques for cleaning of contaminated titanium implants. Clinical Oral Implants Research, 1998. 9(3): p. 185-194.
    [43] Deppe, H. and H.-H. Horch, Laser applications in oral surgery and implant dentistry. Lasers in medical science, 2007. 22(4): p. 217-221.
    [44] Stübinger, S., Etter, C., Miskiewicz, M., Homann, F., Saldamli, B., Wieland, M., and Sader, R., Surface alterations of polished and sandblasted and acid-etched titanium implants after Er: YAG, carbon dioxide, and diode laser irradiation. International Journal of Oral & Maxillofacial Implants, 2010. 25(1).
    [45] Hayek, R.R., Araujo, N. S., Gioso, M. A., Ferreira, J., Baptista-Sobrinho, C. A., Yamada, A. M., and Ribeiro, M. S., Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. Journal of Periodontology, 2005. 76(8): p. 1275-81.
    [46] Gursoy, H., Ozcakir-Tomruk, C., Tanalp, J., and Yilmaz, S., Photodynamic therapy in dentistry: a literature review. Clinical Oral Investigations, 2013. 17(4): p. 1113-25.
    [47] Haffajee, A.D. and S.S. Socransky, Microbial etiological agents of destructive periodontal diseases. Periodontology 2000, 1994. 5(1): p. 78-111.
    [48] Allison, R.R., Bagnato, V.S., Cuenca, R., Downie, G.H., and Sibata, C.H., The future of photodynamic therapy in oncology. 2006.
    [49] Buytaert, E., M. Dewaele, and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochimica Biophys ica Acta, 2007. 1776(1): p. 86-107.
    [50] Konopka, K. and T. Goslinski, Photodynamic therapy in dentistry. Journal of Dental Research, 2007. 86(8): p. 694-707.
    [51] Osburn, C.L. and D.P. Morris, Photochemistry of chromophoric dissolved organic matter in natural waters. UV effects in aquatic organisms and ecosystems, 2003. 1: p. 185-217.
    [52] Pinheiro, S.L., Schenka, A.A., Neto, A.A., de Souza, C.P., Rodriguez, H.M.H., and Ribeiro, M.C., Photodynamic therapy in endodontic treatment of deciduous teeth. Lasers in medical science, 2009. 24(4): p. 521-526.
    [53] Sigusch, B.W., Pfitzner, A., Albrecht, V., and Glockmann, E., Efficacy of photodynamic therapy on inflammatory signs and two selected periodontopathogenic species in a beagle dog model. Journal of periodontology, 2005. 76(7): p. 1100-1105.
    [54] Mohanty, N., Jalaluddin, M., Kotina, S., Routray, S., and Ingale, Y., Photodynamic therapy: the imminent milieu for treating oral lesions. Journal of Clinical and Diagnostic Research, 2013. 7(6): p. 1254-7.
    [55] Reynolds, J., COUNTING BACTERIA. 2011.
    [56] Annunziata, M., Oliva, A., Basile, M.A., Giordano, M., Mazzola, N., Rizzo, A., Lanza, A., and Guida, L., The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. Journal of Dentistry, 2011. 39(11): p. 720-728.
    [57] Sul, Y.-T., Johansson, C.B., Röser, K., and Albrektsson, T., Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials, 2002. 23(8): p. 1809-1817.
    [58] Song, W.-H., Jun, Y.-K., Han, Y., and Hong, S.-H., Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004. 25(17): p. 3341-3349.
    [59] Dijk, J., Herkströter, F., Busscher, H., Weerkamp, A., Jansen, H., and Arends, J., Surface‐free energy and bacterial adhesion. Journal of Clinical Periodontology, 1987. 14(5): p. 300-304.
    [60] Busscher, H., Weerkamp, A., Van der Mei, H., Van Pelt, A., De Jong, H., and Arends, J., Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Applied and Environmental Microbiology, 1984. 48(5): p. 980-983.
    [61] Quirynen, M. and C. Bollen, The influence of surface roughness and surface‐free energy on supra‐and subgingival plaque formation in man. Journal of Clinical Periodontology, 1995. 22(1): p. 1-14.
    [62] Quirynen, M., Marechal, M., Busscher, H.J., Weerkamp, A.H., Darius, P.L., and Steenberghe, D.V., The influence of surface free energy and surface roughness on early plaque formation. Journal of Clinical Periodontology, 1990. 17(3): p. 138-144.
    [63] Bollenl, C.M., P. Lambrechts, and M. Quirynen, Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dental Materials, 1997. 13(4): p. 258-269.
    [64] Rimondini, L., Faré, S., Brambilla, E., Felloni, A., Consonni, C., Brossa, F., and Carrassi, A., The effect of surface roughness on early in vivo plaque colonization on titanium. Journal of Periodontology, 1997. 68(6): p. 556-562.
    [65] Ravi, N.D., R. Balu, and T. Sampath Kumar, Strontium‐Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties. Journal of the American Ceramic Society, 2012. 95(9): p. 2700-2708.
    [66] Yang, Z., J. Cheng, and L. Wang, Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008. 23(4): p. 475-479.
    [67] Wilson, M., J. Dobson, and S. Sarkar, Sensitization of periodontopathogenic bacteria to killing by light from a low‐power laser. Oral Microbiology and Immunology, 1993. 8(3): p. 182-187.
    [68] Chan, Y. and C.-H. Lai, Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers in Medical Science, 2003. 18(1): p. 51-55.
    [69] Fimple, J.L., Fontana, C.R., Foschi, F., Ruggiero, K., Song, X., Pagonis, T.C., Tanner, A.CR., Kent, R., Doukas, A.G., and Stashenko, P.P., Photodynamic Treatment of Endodontic Polymicrobial Infection In Vitro. Journal of Endodontics, 2008. 34(6): p. 728-734.
    [70] Garcez, A.S., Nuñez, S.C., Hamblin, M.R., and Ribeiro, M.S., Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. Journal of Endodontics, 2008. 34(2): p. 138-142.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE