簡易檢索 / 詳目顯示

研究生: 劉子健
Lau, Tsz-Kin
論文名稱: 遙測技術與人工智慧演算法於都市熱島調適策略之應用
Mitigating Urban Heat Island using the integration of remote sensing and artificial intelligent
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 106
中文關鍵詞: 都市熱島遙距感測人工智慧都市降溫都市通風都市遮蔭
外文關鍵詞: Urban heat island, Remote sensing, Artificial Intelligent, Urban climate
相關次數: 點閱:153下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化與氣候變遷等問題,都市熱島效應與都市熱環境日漸加劇,不只嚴重影響都市中人們的舒適度,更會對人體健康帶來不同程度的影響,故都市熱島的緩解與調適十分重要。其中都市熱島的緩解與調適策略可大致分為三種,包括增加水綠比例、都市通風廊道與增加都市遮蔭,不只能有效為都市帶來降溫效果,更能改善都市中的熱環境。然而,大部分的都市研究皆高度依賴官方提供的都市模型,或是昂貴儀器監測所得的高精度都市模型,而上述數據集的製作與維護成本皆相對高昂,非所有研究者都能負擔,故本研究旨在結合遙測技術與人工智慧演算法,解決上述問題,並應用於都市熱島之緩解與調適策略,從而降低相關研究的成本。
    本研究以三個案例,呈現遙測技術與人工智慧演算法之結合如何協助都市建模與都市熱島緩解調適策略之制定。在各個案例中,本研究皆使用U-net神經網路從SPOT 6衛星影像中萃取建物面積,並後續與標準化數位表面模型(Normalized Digital Surface Model, nDSM)套疊,以生成都市三維模型作後續分析應用。在案例一,本研究透過都市模型與衛星影像探討台北市都市發展強度對都市空氣溫度之影響,並後續利用機器學習模型學習都市發展強度與空氣溫度之關係,以建立一都市空氣溫度之預測模式;在案例二,本研究利用都市模型計算台中市的粗糙長度分布,並後續應用A*啟發式搜尋演算法指認示範區與台中市區的潛在都市風廊,以評估台中市內的都市環境,並提供對應的建議;在案例三,本研究利用都市模型與地理資訊系統計算國立成功大學與其附近區域的天空可視率分布,以評估該區域之遮蔭分布,並後續應用於不同時段之熱環境評估,以指認需改善的區域。
    研究成果顯示,利用U-net神經網路從SPOT 6衛星影像萃取的建物面積準確率達75%以上,其後套疊nDSM能有效完成都市建模,供後續研究應用。在台北市,每增加10%的綠覆率可能帶來0.32的降溫,每增加10%的建敞率與容積率可能帶來0.28與0.03的升溫,而機器學習模型也良好地學習上述之關係,以準確預測都市中的空氣溫度,其R2最高達0.98;在台中市,A*演算法指認之風廊大多平均風速皆高於其背景平均風速,確立了上述方法之可行性與適用性。另外,其潛在風廊的指認更能有效反映台中市的通風環境,如台中市區較差的通風狀況、道路網路對都市通風的重要性等;在台南市,本研究確立了利用上述都市模型大範圍天空可視率計算之可行性,其平均誤差與平均絕對誤差最高較官方數據高0.09與0.04,其天空可視率之分布同時能有效協助後續熱環境之評估,指認需改善的區域。綜合而言,本研究確立了遙測技術與人工智慧演算法之結合在都市研究中的適用性,不只能有效降低都市建模之成本,更能有效協助都市熱島緩解與調適策略之制定,其發展潛力無限。

    To reduce the impact from urban heat island on people, mitigation and adaptation are required. However, the cost of urban modeling and related analysis limited the development of above mitigation and adaptation. Therefore, this study aimed to resolve the above problem using remote sensing and artificial intelligent. According to the advancements of science and technology, remote sensing and artificial intelligent became the most critical techniques worldwide, which make various works became more efficient and effective. Hence, this study first developed a method for urban modeling based on SPOT 6 satellite images and U-net model. The proposed method was easy-to-use and effective, which achieved an accuracy rate over 75% in building segmentation. According to the above proposed method, the cost of urban modeling can be reduced. After that, methods for urban heat island mitigation and adaptation were further developed using different kinds of artificial intelligent algorithms. Fist of all, Extreme Gradient Boosting (XGB) and Deep Neural Network (DNN) were applied to understand the relationship between urban development intensity and air temperature. The above models achieved a R2 score and MAE over 0.9 and lower than 1 ◦C, respectively. With the above models, the cost of urban climate monitoring can be reduced, and air temperature mapping can be more efficient and effective. Moreover, A* algorithm was applied for urban ventilation corridors identification. The identified ventilation corridors have relatively high ventilation conditions compared to the background, which validated using computational fluid dynamics (CFD) simulation. Based on the above method, urban ventilation conditions can be briefly identified in the early urban planning, such as identifying the regions need urgent improvements. Finally, a new method for tree canopy segmentation was proposed based on SPOT 6 satellite images and K-means clustering. The proposed method can effectively help in tree canopy segmentation, which is helpful to enhance the shading assessment within cities. With the above methods, including urban and tree canopy modeling, the shading level and thermal conditions within cities can be assessed and simulated easily and conveniently.

    第一章、 緒論 1 第一節、研究背景 1 第二節、研究動機 2 第三節、研究目的 4 第四節、小結 4 第二章、 文獻回顧 6 第一節、都市熱島 6 第二節、 調適對策 7 第三節、 遙距感測之應用 8 第四節、 人工智慧演算法之應用 9 第五節、 地理資訊系統之應用 11 第六節、 小結 11 第三章、 研究方法 13 第一節、 案例一: 台北市-增加水綠比例 13 第二節、 案例二: 台中市-都市通風廊道 22 第三節、 案例三: 台南市-增加都市遮蔭 27 第四章、 成果 34 第一節、 案例一: 台北市-增加水綠比例 34 第二節、 案例二: 台中市-都市通風廊道 47 第三節、 案例三: 台南市-增加都市遮蔭 58 第四節、 小結 68 第五章、 討論 69 第一節、 本研究之貢獻 69 第二節、 限制與建議 73 第六章、 結論 75 第七章、 文獻 76

    1. Abdulmana, S., Lim, A., Wongsai, S., & Wongsai, N. (2021). Land surface temperature and vegetation cover changes and their relationships in Taiwan from 2000 to 2020. Remote Sensing Applications: Society and Environment, 24, 100636.
    2. Adamowski, J., & Karapataki, C. (2010). Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering, 15(10), 729-743.
    3. Akay, S. S., & Sertel, E. (2016). Urban land cover/use change detection using high resolution spot 5 and spot 6 images and urban atlas nomenclature. The international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, 8, 789–796.
    4. Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A. L., Rossi, F., & Zinzi, M. (2016). Local climate change and urban heat island mitigation techniques - The state of the art. Journal of Civil Engineering and Management, 22(1), 1–16.
    5. Alcoforado, M. J., Andrade, H., Lopes, A., & Vasconcelos, J. (2009). Application of climatic guidelines to urban planning: The example of Lisbon (Portugal). Landscape and urban planning, 90(1-2), 56-65.
    6. Al-Saadi, L. M., Jaber, S. H., & Al-Jiboori, M. H. (2020). Variation of urban vegetation cover and its impact on minimum and maximum heat islands. Urban Climate, 34, 100707.
    7. Assareh, E., Behrang, M. A., Assari, M. R., & Ghanbarzadeh, A. (2010). Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy, 35(12), 5223-5229.
    8. Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1–8.
    9. Awad, M. M., & Lauteri, M. (2021). Self-Organizing Deep Learning (SO-UNet)—A Novel Framework to Classify Urban and Peri-Urban Forests. Sustainability, 13(10), 5548.
    10. Bagan, H., & Yamagata, Y. (2012). Landsat analysis of urban growth: How Tokyo became the world's largest megacity during the last 40 years. Remote sensing of Environment, 127, 210-222.
    11. Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J., Jacobeit, J., 2018. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 25, 152–166.
    12. Beumier, C., & Idrissa, M. (2015). Deriving a DTM from a DSM by uniform regions and context. EARSeL eProceedings, 14(1), 16.
    13. Beumier, C., & Idrissa, M. (2016). Digital terrain models derived from digital surface model uniform regions in urban areas. International Journal of Remote Sensing, 37(15), 3477-3493.
    14. Biljecki, F., Ito, K., 2021. Street view imagery in urban analytics and GIS: a review. Landsc. Urban Plann. 215, 104217.
    15. Blocken, B., Janssen, W. D., & van Hooff, T. (2012). CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environmental Modelling & Software, 30, 15–34.
    16. Boonpook, W., Tan, Y., & Xu, B. (2021). Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry. International Journal of Remote Sensing, 42(1), 1-19.
    17. Briegel, F., Makansi, O., Brox, T., Matzarakis, A., Christen, A., 2023. Modelling long-term thermal comfort conditions in urban environments using a deep convolutional encoder-decoder as a computational shortcut. Urban Clim. 47, 101359.
    18. Cai, Z., Han, G., & Chen, M. (2018). Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustainable cities and society, 39, 487–498.
    19. Chang, M. E., Zhao, Z. Q., & Chang, H. T. (2021). Relationship among fractional vegetation cover, land use and urban heat island using Landsat 8 in Taipei, Taiwan. Human-Centered urban planning and design in china: Volume i (pp. 81–95). Cham: Springer.
    20. Chang, S., Jiang, Q., & Zhao, Y. (2018). Integrating CFD and GIS into the development of urban ventilation corridors: A case study in Changchun City. China. Sustainability, 10 (6), 1814.
    21. Chapman, L., Thornes, J.E., 2004. Real-time sky-view factor calculation and approximation. J. Atmos. Ocean. Technol. 21 (5), 730–741.
    22. Cheela, V. S., John, M., Biswas, W., & Sarker, P. (2021). Combating urban heat island effect—A review of reflective pavements and tree shading strategies. Buildings, 11(3), 93.
    23. Chen, C.W., Luo, J., Parker, K.J., 1998. Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans. Image Process. 7 (12), 1673–1683.
    24. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... & Zhou, T. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
    25. Chen, Tianqi, & Guestrin, Carlos. (2016). XGBoost: A scalable tree boosting system.
    26. Chen, Y.C., Yao, C.K., Honjo, T., Lin, T.P., 2018. The application of a high-density street-level air temperature observation network (HiSAN): dynamic variation characteristics of urban heat island in Tainan, Taiwan. Sci. Total Environ. 626, 555–566.
    27. China Meteorological Administration. (2018). Meteorological Industry Standard of the People’s Republic of China: Specifications for Climatic Feasibility Demonstration—Urban Ventilation Corridor: QX/T 437–2018.
    28. Couloigner, I., Ranchin, T., Valtonen, V. P., & Wald, L. (1998). Benefit of the future SPOT-5 and of data fusion to urban roads mapping. International journal of remote sensing, 19(8), 1519-1532.
    29. Damos, M. A., Zhu, J., Li, W., Hassan, A., & Khalifa, E. (2021). A novel urban tourism path planning approach based on a multiobjective genetic algorithm. ISPRS International Journal of Geo-Information, 10(8), 530.
    30. Deng, Z., Chen, Y., Yang, J., & Chen, Z. (2022, September). Archetype identification and urban building energy modeling for city-scale buildings based on GIS datasets. In Building Simulation (Vol. 15, No. 9, pp. 1547-1559). Beijing: Tsinghua University Press.
    31. Ding, C., & Lam, K. P. (2019). Data-driven model for cross ventilation potential in highdensity cities based on coupled CFD simulation and machine learning. Building and Environment, 165, Article 106394.
    32. Dirksen, M., Ronda, R.J., Theeuwes, N.E., Pagani, G.A., 2019. Sky view factor calculations and its application in urban heat island studies. Urban Clim. 30, 100498.
    33. Doick, K. J., Peace, A., & Hutchings, T. R. (2014). The role of one large greenspace in mitigating London’s nocturnal urban heat island. Science of the total environment, 493, 662–671.
    34. Dubey, S.R., Dixit, P., Singh, N., Gupta, J.P., 2013. Infected Fruit Part Detection Using K-Means Clustering Segmentation Technique.
    35. El-Gammal, M.I., Ali, R.R., Samra, R.A., 2014. NDVI threshold classification for detecting vegetation cover in Damietta governorate, Egypt. Journal of American Science 10 (8), 108–113.
    36. Eliasson, I., & Svensson, M. K. (2003). Spatial air temperature variations and urban land use: A statistical approach (pp. 1350–4827). Meteorological Applications.
    37. Esposito, A., Grulois, M., Pappaccogli, G., Palusci, O., Donateo, A., Salizzoni, P., et al., 2023. On the calculation of urban morphological parameters using GIS: an application to Italian cities. Atmosphere 14 (2), 329.
    38. Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225–241.
    39. Fathi, S., Srinivasan, R., Fenner, A., & Fathi, S. (2020). Machine learning applications in urban building energy performance forecasting: A systematic review. Renewable & Sustainable Energy Reviews, 133.
    40. Foody, G. M. (1996). Relating the land-cover composition of mixed pixels to artificial neural network classification output. Photogrammetric Engineering and Remote Sensing, 62(5), 491–500.
    41. Forsyth, A. T., Gibson, L. A., & Turner, A. A. (2014). Assessment of SPOT 6 imagery for mapping the invasive alien plant species Pinus spp. in a mountainous area of the Western Cape. In Proceedings of the Second AfricaGEO Conference (pp. 1–12).
    42. Fröhlich, D., Gangwisch, M., & Matzarakis, A. (2019). Effect of radiation and wind on thermal comfort in urban environments-Application of the RayMan and SkyHelios model. Urban Climate, 27, 1-7.
    43. Gal, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198–206.
    44. Gallacher, D. (2016). Drone applications for environmental management in urban spaces: A review. International Journal of Sustainable Land Use and Urban Planning, 3(4).
    45. Gawuc, L., & Struzewska, J. (2016). Impact of MODIS quality control on temporally aggregated urban surface temperature and long-term surface urban heat island intensity. Remote Sensing, 8(5), 374.
    46. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., & Wolff, E. (2018). Very high resolution object-based land use–land cover urban classification using extreme gradient boosting. IEEE geoscience and remote sensing letters, 15(4), 607-611.
    47. Ghiassi, M., Zimbra, D. K., & Saidane, H. (2008). Urban water demand forecasting with a dynamic artificial neural network model. Journal of Water Resources Planning and Management, 134(2), 138–146.
    48. Ghosh, S.M., Behera, M.D., Kumar, S., Das, P., Prakash, A.J., Bhaskaran, P.K., et al., 2022. Predicting the forest canopy height from LiDAR and multi-sensor data using machine learning over India. Rem. Sens. 14 (23), 5968.
    49. Glorot, Xavier, Bordes, Antoine, & Bengio, Yoshua. (n.d.).“Deep Sparse Rectifier Neural Networks”. (JMLR W&CP.)
    50. Golpira, H., & Bevrani, H. (2011). Application of GA optimization for automatic generation control design in an interconnected power system. Energy Conversion and Management, 52(5), 2247-2255.
    51. Grigillo, D., & Kanjir, U. (2012). Urban object extraction from digital surface model and digital aerial images. (ISPRS annals of the photogrammetry, remote sensing and spatial information sciences).
    52. Grohmann, C. H. (2018). Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sensing of Environment, 212, 121-133.
    53. Gu, Y., Cheng, F., Yang, L., Xu, J., Chen, X., & Cheng, L. (2024). Cost-aware cloud workflow scheduling using DRL and simulated annealing. Digital Communications and Networks.
    54. Gxumisa, A., & Breytenbach, A. (2017). Evaluating pixel vs. segmentation based classifiers with height differentiation on SPOT 6 imagery for urban land cover mapping. South African Journal of Geomatics, 6(3), 436.
    55. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 100–107.
    56. Hathway, E. A., & Sharples, S. (2012). The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Building and environment, 58, 14–22.
    57. He, B. J., Ding, L., & Prasad, D. (2020). Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustainable Cities and Society, 60, Article 102289.
    58. He, J., Hao, Y., & Wang, X. (2021). An interpretable aid decision-making model for flag state control ship detention based on SMOTE and XGBoost. Journal of Marine Science and Engineering, 9(2), 156.
    59. He, X., Chen, Y., & Lin, Z. (2021). Spatial-spectral transformer for hyperspectral image classification. Remote Sensing, 13(3), 498.
    60. He, X., Miao, S., Shen, S., Li, J., Zhang, B., Zhang, Z., Chen, X., 2015. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. Int. J. Biometeorol. 59, 285–297
    61. Heiden, U., Heldens, W., Roessner, S., Segl, K., Esch, T., & Mueller, A. (2012). Urban structure type characterization using hyperspectral remote sensing and height information. Landscape and urban Planning, 105(4), 361-375.
    62. Henseler, J. (2017). Partial least squares path modeling. Advanced methods for modeling markets (pp. 361–381). Cham: Springer.
    63. Honjo, T., Lin, T.P., Seo, Y., 2019. Sky view factor measurement by using a spherical camera. J. Agric. Meteorol. 75 (2), 59–66.
    64. Howard, L. (1818). The climate of London: deduced from meteorological observations, made at different places in the neighbourhood of the metropolis (Vol. 1). W. Phillips, George Yard, Lombard Street, sold also by J. and A. Arch, Cornhill; Baldwin, Cradock, and Joy, and W. Bent, Paternoster Row; and J. Hatchard, Picadilly.
    65. Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems,, 57, 130–143.
    66. Hsu, S., Mavrogianni, A., & Hamilton, I. (2017). Comparing spatial interpolation techniques of local urban temperature for heat-related health risk estimation in a subtropical city. Procedia engineering, 198, 354–365.
    67. Huang, H. C., Lin, F. T., & Hsieh, C. M. (2014). A simple method for designation of urban ventilation path by using agent analyst in GIS—A study of Tainan. In Proceedings of the Conference on Sustainable Business (pp. 17–19). Hiroshima, Japan: Energy and Development in Asia.
    68. Huang, Y., Yu, B., Zhou, J., Hu, C., Tan, W., Hu, Z., & Wu, J. (2013). Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution remote sensing images. Frontiers of Earth Science, 7(1), 43–54.
    69. Irfan, M., Hussain, S. F., Mapara, K., Memon, S., Mogri, M., Bana, M., ... & Khan, N. A. (2009). Community acquired pneumonia: risk factors associated with mortality in a tertiary care hospitalized patients. Journal of the Pakistan Medical Association, 59(7), 448.
    70. J. Takaku, T. Tadono, M. Doutsu, F. Ohgushi, and H. Kai, : “Updates of 'AW3D30' ALOS Global Digital Surface Model in Anterctica with Other Open Access Datasets”, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 401-408, 2021.
    71. Jiao, Y., Wang, D., Yao, X., Wang, S., Chi, T., Meng, Y., 2023. Forest emissions reduction assessment using optical satellite imagery and space LiDAR fusion for carbon stock estimation. Rem. Sens. 15 (5), 1410.
    72. Jones, B. M., Cook, M. J., Fitzgerald, S. D., & Iddon, C. R. (2016). A review of ventilation opening area terminology. Energy and Buildings, 118, 249–258.
    73. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science (New York, N.Y.), 349(6245), 255–260.
    74. Juang, L.H., Wu, M.N., 2010. MRI brain lesion image detection based on color-converted K-means clustering segmentation. Measurement 43 (7), 941–949.
    75. Kagiya, K., & Ashie, Y. (2009). National research project on Kaze-no-michi for city planning: creation of ventilation paths of cool sea breeze in Tokyo. In Second international conference on countermeasures to Urban Heat Islands. Berkeley: Heat Island Group.
    76. Kaplan, Gordana, & Avdan, Ugur (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50(1), 137–143.
    77. Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support vector machine model for urban expansion prediction. Computers, Environment and Urban Systems, 75, 61-75.
    78. Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2021). Urban expansion modeling using an enhanced decision tree algorithm. GeoInformatica, 25, 715-731.
    79. Kent, C. W., Grimmond, S., & Gatey, D. (2017). Aerodynamic roughness parameters in cities: Inclusion of vegetation. Journal of Wind Engineering and Industrial Aerodynamics, 169, 168–176.
    80. Khanal, S., Kc, K., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), 3783.
    81. Kim, E.S., Yun, S.H., Park, C.Y., Heo, H.K., Lee, D.K., 2022. Estimation of mean radiant temperature in urban canyons using Google Street View: a case study on Seoul. Rem. Sens. 14 (2), 260.
    82. Kim, J., Lee, D.K., Brown, R.D., Kim, S., Kim, J.H., Sung, S., 2022. The effect of extremely low sky view factor on land surface temperatures in urban residential areas. Sustain. Cities Soc. 80, 103799.
    83. Kim, Y.-M., Kim, S., Cheong, H.-K., Ahn, B., & Choi, K. (2012). Effects of heat wave on body temperature and blood pressure in the poor and elderly. Environmental Health and Toxicology, 27.
    84. Konarska, J., Klingberg, J., Lindberg, F., 2021. Applications of dual-wavelength hemispherical photography in urban climatology and urban forestry. Urban For. Urban Green. 58, 126964.
    85. Kondo, J., & Yamazawa, H. (1986). Aerodynamic roughness over an inhomogeneous ground surface. Boundary-Layer Meteorology, 35, 331–348.
    86. Koonce, B., & Koonce, B. (2021). ResNet 50. Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization, 63-72.
    87. Koumetio, T. S. C., Diop, E. B., Azmi, R., Jaligot, R., & Chenal, J. (2021). Reviewing the application of machine learning methods to model urban form indicators in planning decision support systems: Potential, issues and challenges. Journal of King Saud University - Computer and Information Sciences.
    88. Lai, L. W., & Cheng, W. L. (2010). Air temperature change due to human activities in Taiwan for the past century. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(3), 432–444.
    89. Lang, N., Jetz, W., Schindler, K., Wegner, J.D., 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution 1–12.
    90. Lau, T. K., & Huang, K. H. (2024). A timely and accurate approach to nearshore oil spill monitoring using deep learning and GIS. Science of The Total Environment, 912, 169500.
    91. Lau, T. K., & Lin, T. P. (2024). Investigating the relationship between air temperature and the intensity of urban development using on-site measurement, satellite imagery and machine learning. Sustainable Cities and Society, 100, 104982.
    92. Lau, T. K., Chen, Y. C., & Lin, T. P. (2023). Application of local climate zones combined with machine learning to predict the impact of urban structure patterns on thermal environment. Urban Climate, 52, 101731.
    93. Lau, T. K., Tsai, P. C., Ou, H. Y., & Lin, T. P. (2024). Efficient and cost-effective method for identifying urban ventilation corridors using a heuristic search algorithm. Sustainable Cities and Society, 101, 105144.
    94. Lau, T. K., & Lin, T. P. (2024). Lowering the difficulty of mesoscale sky view factor mapping using satellite products. Remote Sensing Applications: Society and Environment, 101174.
    95. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86 (11), 2278–2324
    96. Lee, K., Kim, Y., Sung, H. C., Ryu, J., & Jeon, S. W. (2019). Trend analysis of urban heat island intensity according to urban area change in Asian mega cities. Sustainability, 12(1), 112.
    97. Li, S., & Zhang, X. (2020). Research on orthopedic auxiliary classification and prediction model based on XGBoost algorithm. Neural Computing and Applications, 32(7), 1971-1979.
    98. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C. W., & Heng, P. A. (2018). H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE transactions on medical imaging, 37(12), 2663-2674.
    99. Li, X., Wang, G., 2021. GPU parallel computing for mapping urban outdoor heat exposure. Theor. Appl. Climatol. 145 (3–4), 1101–1111.
    100. Li, Y., Sun, Y., Li, J., & Gao, C. (2020). Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustainable Cities and Society, 63, 102425.
    101. Lima, F., Brown, N., & Duarte, J. (2021). Urban design optimization: Generative approaches towards urban fabrics with improved transit accessibility and walkability: Generative approaches towards urban fabrics with improved transit accessibility and walkability. In 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia: Projections, CAADRIA 2021 (pp. 719-728). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA).
    102. Lin, C.-Y., Chen, F., Huang, J. C., Chen, W.-C., Liou, Y.-A., Chen, W.-N., & Liu, S.-C. (2008). Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmospheric Environment, 42(22), 5635.
    103. Lin, P., Lau, S. S. Y., Qin, H., & Gou, Z. (2017). Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment. Landscape and urban planning, 168, 48-60.
    104. Lin, T.P., Matzarakis, A., Hwang, R.L., 2010. Shading effect on long-term outdoor thermal comfort. Build. Environ. 45 (1), 213–221.
    105. Lin, T.P., Tsai, K.T., Hwang, R.L., Matzarakis, A., 2012. Quantification of the effect of thermal indices and sky view factor on park attendance. Landsc. Urban Plann. 107 (2), 137–146.
    106. Liou, C. S., Chen, J. H., Terng, C. T., Wang, F. J., Fong, C. T., Rosmond, T. E., … Cheng, M. D. (1997). The second–generation global forecast system at the central weather bureau in Taiwan. Weather and Forecasting, 12(3), 653–663.
    107. Liu, C., Frazier, P., & Kumar, L. (2007). Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606–616.
    108. Liu, L., Coops, N. C., Aven, N. W., & Pang, Y. (2017). Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 200, 170-182.
    109. Liu, P., Jia, S., Han, R., Liu, Y., Lu, X., & Zhang, H. (2020). RS and GIS supported urban LULC and UHI change simulation and assessment. Journal of Sensors, 2020, 1-17.
    110. Liu, X., Huang, B., Li, R., Zhang, J., Gou, Q., Zhou, T., & Huang, Z. (2022). Wind environment assessment and planning of urban natural ventilation corridors using GIS: Shenzhen as a case study. Urban Climate, 42, Article 101091.
    111. Ma, Y., & Guo, G. (Eds.). (2014). Support vector machines applications (Vol. 649). New York: Springer.
    112. Macarof, P., & Statescu, F. (2017). Comparasion of NDBI and NDVI as indicators of surface urban heat island effect in landsat 8 imagery: a case study of Iasi. Present Environment and Sustainable Development, (2), 141-150.
    113. Maduako, I. D., Yun, Z., & Patrick, B. (2016). Simulation and prediction of land surface temperature (LST) dynamics within Ikom City in Nigeria using artificial neural network (ANN). Journal of Remote Sensing & GIS, 5(1), 1–7.
    114. Maing, M. (2022). Superblock transformation in Seoul Megacity: Effects of block densification on urban ventilation patterns. Landscape and Urban Planning, 222, Article 104401.
    115. Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., ... & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77, 103564.
    116. Masoomi, Z., Mesgari, M. S., & Hamrah, M. (2013). Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. International Journal of Geographical Information Science, 27(3), 542-566.
    117. Matzarakis, A., & Amelung, B. (January 01, 2008). Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans.
    118. Matzarakis, A., & Mayer, H. (1992). Mapping of urban air paths for planning in Munich. Wiss. Ber. Inst. Meteor. Klimaforsch. Univ. Karlsruhe, 16, 13–22.
    119. Mayer, H. (1994). Bestimmung von stadtklimarelevanten Luftleitbahnen. UVP-report, 5, 265–267.
    120. Mei, S. J., & Yuan, C. (2022). Urban buoyancy-driven air flow and modelling method: A critical review. Building and Environment, 210, Article 108708.
    121. Mo, H., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 205, 109564.
    122. Mohammadzadeh, A., Tavakoli, A., Valadan Zoej, M.J., 2006. Road extraction based on fuzzy logic and mathematical morphology from pan-sharpened IKONOS images. Photogramm. Rec. 21 (113), 44–60.
    123. Moore, F. D., Smith, L. L., Burnap, T. K., Dallenbach, F. D., Dammin, G. J., Gruber, U. F., & Belko, J. S. (1959). One-stage homotransplantation of the liver following total hepatectomy in dogs. Plastic and Reconstructive Surgery, 23(1), 103–106.
    124. Motazedian, A., Coutts, A. M., & Tapper, N. J. (2020). The microclimatic interaction of a small urban park in central Melbourne with its surrounding urban environment during heat events. Urban Forestry & Urban Greening, 52, Article 126688.
    125. Mukherjee, F., & Singh, D. (2020). Assessing land use–land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Systems and Environment, 4(2), 385-407.
    126. Mutiibwa, D., Strachan, S., & Albright, T. (2015). Land surface temperature and surface air temperature in complex terrain. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4762–4774.
    127. Neyns, R., & Canters, F. (2022). Mapping of urban vegetation with high-resolution remote sensing: A review. Remote sensing, 14(4), 1031.
    128. Nielsen, M.M., 2015. Remote sensing for urban planning and management: the use of window-independent context segmentation to extract urban features in Stockholm. Comput. Environ. Urban Syst. 52, 1–9.
    129. Nojarov, P., & SpringerLink (Online service). (2018). Factors affecting air temperature in Bulgaria. (Theoretical and applied climatology).
    130. Oke, T. R. (1987). Boundary Layer Climates. London: Methuen & Co. Ltd.
    131. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press
    132. Osilla, E.V., Marsidi, J.L., & Sharma, S. (2018). Physiology, temperature regulation.
    133. Ozkan, M. F., Carrillo, L. R. G., & King, S. A. (2019). Rescue boat path planning in flooded urban environments. In 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR) (p. B2). IEEE. -2.
    134. Park, S. B., Baik, J. J., & Lee, S. H. (2015). Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area. Journal of Applied Meteorology and Climatology, 54(4), 811–824.
    135. Peng, H., & Chen, S. (2019). BDNN: Binary convolution neural networks for fast object detection. Pattern Recognition Letters, 125, 91–97
    136. Peng, W., Xu, M., Li, X., Huai, X., Liu, Z., & Wang, H. (2017). CFD study on thermal transport in open-cell metal foams with and without a washcoat: Effective thermal conductivity and gas-solid interfacial heat transfer. Chemical Engineering Science, 161, 92–108.
    137. Qassim, H., Verma, A., & Feinzimer, D. (2018, January). Compressed residual-VGG16 CNN model for big data places image recognition. In 2018 IEEE 8th annual computing and communication workshop and conference (CCWC) (pp. 169-175). IEEE.
    138. Qiao, Z., Xu, X., Wu, F., Luo, W., Wang, F., Liu, L., & Sun, Z. (2017). Urban ventilation network model: A case study of the core zone of capital function in Beijing metropolitan area. Journal of Cleaner Production, 168, 526-535.
    139. Ren, C. (2016). Urban Ventilation Assessment and Air Path Plan—Creating ‘Breathing Cities’
    140. Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, pp. 234–241.
    141. Saher, R., Stephen, H., Ahmad, S., 2020,. Effect of building shade on evapotranspiration in Las Vegas Valley. In: World Environmental and Water Resources Congress 2020. American Society of Civil Engineers, Reston, VA, pp. 57–65.
    142. Shen, C., Shen, A., Cui, Y., Chen, X., Liu, Y., Fan, Q., & Wu, J. (2021). Spatializing the roughness length of heterogeneous urban underlying surfaces to improve the WRF simulation-part 1: A review of morphological methods and model evaluation. Atmospheric Environment, Article 118874.
    143. Singh, N., Singh, S., & Mall, R. K. (2020). Urbanecology and human health: Implications of urban heat island, air pollution and climate change nexus. Urban ecology (pp. 317–334).
    144. Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS journal of photogrammetry and remote sensing, 59(1-2), 85-101.
    145. Son, J. M., Eum, J. H., & Kim, S. (2022). Wind corridor planning and management strategies using cold air characteristics: The application in Korean cities. Sustainable Cities and Society, 77, 103512.
    146. Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
    147. Suder, A., & Szymanowski, M. (2014). Determination of ventilation channels in urban area: a case study of Wrocław (Poland). Pure and Applied Geophysics, 171, 965–975.
    148. Sun, C. Y., Kato, S., & Gou, Z. (2019). Application of low-cost sensors for urban heat island assessment: A case study in Taiwan. Sustainability, 11(10), 2759.
    149. Sun, J., Wang, X., Chen, A., Ma, Y., Cui, M., & Piao, S. (2011). NDVI indicated characteristics of vegetation cover change in China’s metropolises over the last three decades. Environmental monitoring and assessment, 179, 1-14.
    150. Taheri-Shahraiyni, H., & Sodoudi, S. (2017). High-resolution air temperature mapping in urban areas: A review on different modelling techniques. Thermal Science, 21(6 Part A), 2267–2286.
    151. Tang, L., & Shao, G. (2015). Drone remote sensing for forestry research and practices. Journal of Forestry Research, 26, 791-797.
    152. Tomlinson, R. F. (1962, November). Computer mapping: an introduction to the use of electronic computers in the storage, compilation and assessment of natural and economic data for the evaluation of marginal lands. In Proceedings of the National Land Capability Inventory Seminar.
    153. Toparlar, Y., Blocken, B., Vos, P. V., Van Heijst, G. J. F., Janssen, W. D., van Hooff, T., & Timmermans, H. J. P. (2015). CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid. Rotterdam. Building and environment, 83, 79–90.
    154. Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International journal of applied Earth observation and Geoinformation, 8(1), 34-48.
    155. Tso, G. K., & Yau, K. K. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32(9), 1761-1768.
    156. Upadhyay, A., Shrimali, K. R., & Shukla, A. (2018). UAV-Robot relationship for coordination of robots on a collision free path. Procedia Computer Science, 133, 424–431.
    157. VDI. (2015). VDI 3787, Part II: Environmental Meteorology: Climate and air pollution maps for cities and regions. VDI/DIN manual Air Pollution Prevention.
    158. Venter, Z. S., Brousse, O., Esau, I., & Meier, F. (2020). Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242, Article 111791.
    159. Venter, Z.S., Barton, D.N., Chakraborty, T., Simensen, T., Singh, G., 2022. Global 10 m land use land cover datasets: a comparison of dynamic World, World cover and esri land cover. Rem. Sens. 14 (16), 4101.
    160. Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148 (1), 27–46.
    161. Wang, T., Fang, F., Li, F., Zhang, G., 2018. High-quality bayesian pansharpening. IEEE Trans. Image Process. 28 (1), 227–239.
    162. Wang, W., Wang, D., Chen, H., Wang, B., & Chen, X. (2022). Identifying urban ventilation corridors through quantitative analysis of ventilation potential and wind characteristics. Building and Environment, 214, Article 108943.
    163. Wang, Y., Akbari, H., 2014. Effect of sky view factor on outdoor temperature and comfort in Montreal. Environ. Eng. Sci. 31 (6), 272–287.
    164. Wang, Y., Liang, X., Hei, X., Ji, W., & Zhu, L. (2021). Deep learning data privacy protection based on homomorphic encryption in AIoT. Mobile Information Systems, 2021, 1-11.
    165. Weber, C., Aguejdad, R., Briottet, X., Avala, J., Fabre, S., Demuynck, J., ... & Chehata, N. (2018, July). Hyperspectral imagery for environmental urban planning. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1628-1631). IEEE.
    166. Wei, C., Chen, W., Lu, Y., Blaschke, T., Peng, J., & Xue, D. (2021). Synergies between Urban Heat Island and Urban Heat Wave Effects in 9 Global Mega-Regions from 2003 to 2020. Remote Sensing, 14(1), 70.
    167. Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.
    168. Wong, W. T., & Hsu, S. H. (2006). Application of SVM and ANN for image retrieval. European Journal of Operational Research, 173(3), 938-950.
    169. Wortmann, T., & Natanian, J. (2020, May). Multi-objective optimization for zero-energy urban design in China: A benchmark. In Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design (pp. 1-8).
    170. Xin, Q., Alazab, M., Díaz, V. G., Montenegro-Marin, C. E., & Crespo, R. G. (2022). A deep learning architecture for power management in smart cities. Energy Reports, 8, 1568-1577.
    171. Xu, X., Liu, Y., Wang, W., Xu, N., Liu, K., & Yu, G. (2019). Urban layout optimization based on genetic algorithm for microclimate performance in the cold region of China. Applied Sciences, 9(22), 4747.
    172. Yang, B., Olofsson, T., Nair, G., Kabanshi, A., 2017. Outdoor thermal comfort under subarctic climate of north Sweden–A pilot study in Umeå. Sustain. Cities Soc. 28, 387–397.
    173. Yin, S., Lang, W., Xiao, Y., & Xu, Z. (2019). Correlative impact of shading strategies and configurations design on pedestrian-level thermal comfort in traditional shophouse neighbourhoods, Southern China. Sustainability, 11(5), 1355.
    174. Yin, Z., Liu, Z., Liu, X., Zheng, W., & Yin, L. (2023). Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators, 154, 110765.
    175. Yu, S.Y., Matzarakis, A., Lin, T.P., 2020. A study of the thermal environment and air quality in hot–humid regions during running events in southern taiwan. Atmosphere 11 (10), 1101.
    176. Yuan, C., & Ng, E. (2012). Building porosity for better urban ventilation in high-density cities – A computational parametric study. Building and Environment, 50, 176–189.
    177. Yuan, Q., Wei, Y., Meng, X., Shen, H., Zhang, L., 2018. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 11 (3), 978–989.
    178. Yue, H., & Shao, C. (2007). Study on the application of A* shortest path search algorithm in dynamic urban traffic. In , 5. Third International Conference on Natural Computation (ICNC 2007) (pp. 463–469). IEEE.
    179. Zhang, S., Kwok, K. C., Liu, H., Jiang, Y., Dong, K., & Wang, B. (2021). A CFD study of wind assessment in urban topology with complex wind flow. Sustainable Cities and Society, 71, Article 103006.
    180. Zhang, Y., Zhang, J., Zhang, X., Zhou, D., Gu, Z., 2020. Analyzing the characteristics of UHI (urban heat island) in summer daytime based on observations on 50 sites in 11 LCZ (local climate zone) types in Xi’an, China. Sustainability 13 (1), 83.
    181. Zheng, T., Qu, K., Darkwa, J., & Calautit, J. K. (2022). Evaluating urban heat island mitigation strategies for a subtropical city centre (a case study in Osaka, Japan). Energy, 250, 123721.
    182. Zheng, Y., Tang, L., & Wang, H. (2021). An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. Journal of Cleaner Production, 328, 129488.
    183. Zhou, F., Hang, R., Liu, Q., & Yuan, X. (2017). Hyperspectral image classification using spectral-spatial LSTMs. In Computer Vision: Second CCF Chinese Conference, CCCV 2017, Tianjin, China, October 11–14, 2017, Proceedings, Part I (pp. 577-588). Springer Singapore.
    184. Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters, 10(4), 928–931.
    185. Zhu, S., & Zhu, F. (2019). Cycling comfort evaluation with instrumented probe bicycle. Transportation research part A: policy and practice, 129, 217-231.
    186. 王以君(2023)。應用衛星資料探討台中地區都市熱島效應與綠地之研究。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。
    187. 王柳臻,陳永明,林子平,2022.12.09,高解析氣候歷史重建資料於都市規劃之潛在高溫危害應用,2022臺灣災害管理研討會,新北市
    188. 王禹方(2020)。應用高密度地面氣溫測量網(HiSAN)探討三維熱環境特徵及預測都市熱舒適分布。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    189. 北京城市總體規劃(2016年-2035年)
    190. 李魁鵬(1999)。台灣四大都會區都市熱島之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    191. 侯凱山(2019)。應用高密度地面氣溫量測網探討熱環境及風環境之時空變遷。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    192. 郭筱晴(2019)。應用高密度環境溫度觀測網(STONK)探討土地利用與氣溫分布之關聯。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    193. 廖昱捷(2018)。應用高密度地面氣溫量測網(HiSAN)於氣溫與土地利用及覆蓋之分析。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    194. 歐星妤(2014)。ArcGIS輔助地價作業之研究。﹝碩士論文。佛光大學﹞臺灣博碩士論文知識加值系統。
    195. 歐星妤(2021)。戶外遮蔽設施方位與尺寸對熱舒適影響之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    196. 蔡沛淇(2023)。基於都市風環境永續發展之風廊系統構建與應用。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE