| 研究生: |
施力文 Shih, Li-Wen |
|---|---|
| 論文名稱: |
藉由主動式磁浮軸承對銑切主軸之非線性控制 Nonlinear Spindle Control for Milling Process by Using Active Magnetic Bearings |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 磁浮軸承 、銑切 、模糊理論 |
| 外文關鍵詞: | Active Magnetic Bearing, Fuzzy Logic Algorithm, Cutting Process |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在建立主軸銑切系統於不同切削條件下之部分動態參數,並整合磁浮軸承技術、模糊理論及非線性控制器,節制主軸因切削工件時切削力作用所產生的偏擺。 本研究將主動式磁浮軸承運用於銑切系統上,建立磁力數學模型為一電流及氣隙的非整數階雙變數之非線性函數,利用反運算反推磁浮系統所需提供的電流大小,以得到與切削力相同大小的抗衡磁吸力作為主軸偏移的補償。 由於機台在不同的切削條件下擁有不同的系統動態,本文透過實驗法建立銑切系統於不同切削條件下之部分動態,配合模糊理論給予不同之權重分配,找出與銑切當下最接近之動態參數以估測切削力大小,並利用自調式增益演算法,改變估測切削力大小。 由電腦模擬之結果,可見其具有良好的抑制效能,工件之加工精度亦能大幅提升。
The main goal of this research is to regulate the spindle deviation under different milling conditions by using Active Magnetic Bearing(AMB) technology, fuzzy logic algorithm and nonlinear adaptive control loop. Since the dynamics of milling system is highly dominated by system parameters, such as speed of spindle and feedrate, therefore the system dynamic model is more appropriate to be established by experiments instead of using theoretical analysis. The experimental data are utilized to estimate system parameters under various milling conditions before the fuzzy logic algorithm and the estimated cutting force are developed. Once the cutting force can be estimated, a compensation force is to be provided by the AMB to regulate spindle deviation. Since the magnetic force is highly nonlinear, the characteristic of AMB is investigated by experiments and a nonlinear mathematical model, in terms of air gap between spindle and magnetic pole and coil current, is established. Based on the model of magnetic attraction force, the controller is expected to evaluate the quantity of magnetic force to counter balance the cutting force precisely. The simulation results exhibit the efficacy of spindle deviation regulation as that the surface quality of workpieces after milling process can be improved.
[1] M. Spirig, Schmied, P. Jenckel, U. Kanne, “Three Practical Examples of Magnetic Bearing Control Design using a Modern Tool”, Journal of Engineering for Gas Turbines and Power, Vol. 124, No. 4, pp. 1025-1031, 2002.
[2] J. H. Kyung, C. W. Lee, “Controller Design for a Magnetically Suspended Milling Spindle Based on Chatter Stability Analysis”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 46, No. 2, pp. 416-422, 2003.
[3] P. E. Allaire, R. R. Humphris, R. D. Kelm, “Dynamics of a Digitally Controlled Magnetic Bearing”, Nippon Kikai Gakkai Ronbunshu, Vol. 51, No. 465, pp. 1095-1100, 1985.
[4] N. C. Tsai, C. H. Kuo, R. M. Lee, “Regulation on Radial Position Deviation for Vertical AMB Systems”, Mechanical System and Signal Processing, Vol. 21, pp. 2777-2793, 2007.
[5] A. C. Lee, F. Z. Hsiao, D. Ko, “Analysis and Testing of MagneticBearing wish Permanent Magnets for Bias”, JSME International Journal, Vol. 37, No. 4, pp. 774-782, 1994.
[6] Y. H. Fan, A. C. Lee, “Design of a Permanent/Electromagnetic Magnetic Bearing-Controlled Rotor System”, Journal of the Franklin Institute, Vol. 334B, No. 3, pp. 337-359, 1997.
[7] S. L. Chen, C. T. Hsu, “Optimal Design of a Three-Pole Active Magnetic Bearing”, IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3458-3466, 2002.
[8] C. T. Hsu, S. L. Chen, “Exact Linearization of a Voltage-Controlled 3-Pole Active Magnetic Bearing System”,IEEE Transactions on Control Systems Technology, Vol. 10, No. 5, pp. 618-625, 2002.
[9] N. C. Tsai, S. L. Hsu,“On Sandwiched Magnetic Bearing Design”, Electromegnetics, Vol. 27, No. 6, pp. 371-385, 2007.
[10] H. J. Ahn, S. W. Lee, S. H. Lee, D. C. Han, “Frequency Domain Control-Relevant Identification of MIMO AMB Rigid Rotor”, Automatica, Vol. 39, pp. 299-307, 2003.
[11] P. C. Tung, S. C. Chang, “Nonlinear Identification of a Magnetic Bearing Systems with Closed Loop Control”, JSME International Journal, Vol. 42, No. 4, 1999.
[12] L. K. Lauderbaugh, A. G. Ulsoy, “Dynamic Modeling for Control of Milling Process”, Journal of Engineering for Industry Transactions ASME, Vol. 110, No. 4, pp. 367-375, 1988.
[13] M. Y. Yang, T. M. Lee, “Hybrid Adaptive Control Based on the Characteristics of CNC End Milling”, Machine Tools & Manufacture, Vol. 42, pp. 489-499, 2002.
[14] H. Nolzen, R. Isermann, “Fast Adaptive Cutting Force Control for Milling Operation”, IEEE Conference on Control Applications, pp. 760-765, 1995.
[15] S. Jee, Y. Koren, “Adaptive Fuzzy Logic Controller for Feed Drives of a CNC Machine Tool”, Mechatroniccs, Vol. 14, No. 3, pp. 299-326, 2004.
[16] Y. H. Peng, “On the Performance Enhancement of Self-tuning Adaptive Control for Time-Varying Machining Processes”, International Journal Advanced Manufacturing Technology, Vol. 24, No.5, pp. 395-403, 2004.
[17] 陳建廷,“基於小波訊號處理之磁浮軸承系統鑑別”,碩士論文,國立成功大學,民國94年。
[18] N. C. Tsai, C. H. Kuo, R. M. Lee, “Regulation on Radial Position Deviation for Vertical AMB Systems”, Mechanical Systems and Signal Processing, Vol. 21, No. 7, pp. 2777-2793, 2003.
[19] B. C. Kuo, “Automatic Control Systems”, Seventh Edition, Prentice Hall, 1997.
[20] G. F. Franklin, J. D. Powell, E. N. Abbas, “Feedback Control of Dynamics Systems”, Third Edition, Addison Wesley, 1994.
[21] S. C. Jonathon Lin, “Computer Numerical Control”, 高立出版社, 1999.