簡易檢索 / 詳目顯示

研究生: 黃翊慈
Huang, I-Tzu
論文名稱: 利用熱燈絲摻雜研製場效電晶體及3D矽穿孔氣體感測器
MOSFET Prepared by Hot Wire Doping SOI Substrate and 3D Gas Sensor with TSV Technology
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 103
中文關鍵詞: 熱燈絲化學相沉積金氧半場效電晶體矽穿孔氣體感測器
外文關鍵詞: HWCVD, MOSFET, TSV, Gas Sensor
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金氧半場效電晶體 (MOSFET) 尺寸逐年縮小, 傳統的矽基板電晶體將面臨嚴重的物理限制, 例如短通道效應。因此許多研究致力於解決短通道效應, 例如: FinFet、3D-IC 或是High K 材料。其中淺接面摻雜技術也是其解決短通道效應的方法之一。 若可以在MOSFET 的通道裡形成奈米級的摻雜深度並且降低摻雜製程中對矽晶格的破壞將可以大幅降低短通道效應。由許多文獻指出本篇論文使用的熱燈絲沉積系統是一種可以達到淺接面的摻雜深度並且對矽基板有少量破壞的摻雜技術。在此論文中以電漿輔助熱燈絲沉積系統在矽基板和SOI基板上製作N型的金氧半場效電晶體,並對兩者的電性進行比較和討論。其中利用SOI基板製作的N型MOSFET具有低的次臨界擺幅及較高的開關電流比。
    隨著摩爾定律的失效,利用3-D多功的整合,發展所謂的More than Moore,逐漸成為發電子元件技術的趨勢,其中矽穿孔為實現3-D整合的技術之一,矽穿孔的優點包含了能達成高的封裝密度、低的功率消耗、高的效能表現,因而成為相當具有發展潛力的技術。在本研究中,我們將矽穿孔與金奈米顆粒附著的氧化鋅薄膜一氧化碳感測器結合。其中我們達成無缺陷及孔洞的矽穿孔填銅,單一根矽穿孔的電阻值也與理想值相符合。整合成的3-D氣體感測器能夠對8ppm的一氧化碳有25%的響應。

    As the MOSFET devices have been scaling down, short channel effects become serious problems for traditional bulk MOSFETs. As the result, alternative MOSFET structure has been proposed. Shallow doping profile is a solution. Shallow doping profiles in drain and source and reducing implantation damage are the most popular methods to suppress short channel effect. According to some studies, HWCVD doping system can reach shallow junction doping. In this study, the N type MOSFET devices on bulk-Si and SOI with HWCVD assistant ICP doping system were investigated and compared.
    As technology keeps progressing, 3D integration becomes critical and shows advantages of high packaging density, lower consumption. TSV is considered a potential technique. In this paper we integrated a highly sensitive Au particles adsorbed CO gas sensor integrated with TSV. The TSV was well fabricated without voids. The calculated resistance matched the one we measured. The ZnO CO gas sensor responded fast and had a sensitivity of 25% at CO concentration of 8 ppm.

    Content 摘要 I Abstract III 誌謝 V Content 1 Table Caption 6 Figure Caption 7 Chapter 1 Introduction 11 1.1. Background and Motivation 11 1.2. Present doping techniques 13 1.3. Through Silicon Via Overview 15 1.4. Gas sensor Overview 17 Chapter 2 Fabrication System and Important Parameters 26 2.1 Fabrication System of n-MOSFET and 3-D ZnO Gas Sensor 26 2.1.1 RCA clean System 26 2.1.2 Furnace Tube System 27 2.1.3 RF Sputtering 28 2.1.4 Mask Aligner 29 2.1.5 Hot Wire Chemical Vapor Deposition 30 2.1.6 Rapid Thermal Annealing (RTA) 33 2.1.7 Plasma Enhance Chemical Vapor Deposition &Ion Coupled Plasma Etching System 34 2.1.8 Thermal Evaporation 35 2.1.9 Atomic Layer Deposition 35 2.2 Analysis Equipment 36 2.2.1 Microscopes Raman Spectrometer 36 2.2.2 Secondary Ion Mass Spectrometry 37 2.2.3 Energy Dispersive X-ray Spectroscopy (EDX) 38 2.2.4 Scanning Electrons Microscope 38 2.3 Important Parameters and Related Mechanism 39 2.3.1 Field-Effect Mobility 39 2.3.2 Threshold Voltage (Vth) 40 2.3.3 Gate Electrode Work Function 40 2.3.4 On/off current Ratio (Ion/off) 41 2.3.5 Subthreshold Swing (S.S) 42 2.3.6 High κ Material: HfO2 43 2.3.7 Bosch Etching and Cryogenic Etching 43 2.3.8 Au Particle Adsorbed ZnO based Gas Sensing Mechanism 45 Chapter 3 Experimental Methods and Process 53 3.1 Experiment Procedure 53 3.2 N-MOSFET Experiment Process steps 54 3.2.1 RCA Clean Wafers 54 3.2.2 Photo lithography 55 3.2.3 Silicon Etching 55 3.2.4 Dry Oxide 56 3.2.5 Photo lithography 56 3.2.6 RF Sputter 56 3.2.7 ICP Etching SiO2 57 3.2.8 Hot Wire Chemical Vapor Deposition 57 3.2.8 Rapid Thermal Annealing 57 3.2.9 Source/Drain electrode 58 3.3 3D ZnO based Gas Sensor Experiment Process 58 3.3.1 PECVD SiO2 Growth 58 3.3.2 DC Sputter Al 58 3.3.3 Photo Lithography 59 3.3.4 Silicon Etching 59 3.3.5 SiO2 Insulator by Furnace 60 3.3.6 Ti/Cu Barrier/Seed Layer Deposited 60 3.3.7 Photo Lithography 60 3.3.8 Copper Electroplating 61 3.3.9 Barrier/Seed Layer Etching 62 3.3.10 SiO2 growth 62 3.3.11 Gold Electrodes by Thermal Evaporation 62 3.3.12 ZnO Thin Film by Sputter 62 3.3.13 Au Thin Film by Sputter 63 3.3.14 Rapid Thermal Annealing (RTA) 63 Chapter 4 Results and Discussion 72 4.1 HWID Analysis and n-MOSFET Electrical Characteristic 72 4.1.1 Phosphorus- Doping Analysis 72 4.1.2 N-MOSFET with SiO2 Gate Insulation Layer on Bulk Silicon 73 4.1.3 N-MOSFET with SiO2 Gate Insulation Layer on SOI 76 4.1.4 N-MOSFET with HfO2 Gate Insulation Layer on SOI 78 4.2 3D ZnO Based Gas Sensor 80 4.2.1 Cu plating result and electrical property of TSV 80 4.2.2 3D ZnO based Gas Sensor 81 Chapter 5 Conclusion and Future work 92 5.1 Conclusion 92 5.2 Future Work 93 Reference 95 Reference in Chapter 1 95 Reference in Chapter 2 100 Reference in Chapter 4 102

    Reference in Chapter 1
    [1] H. Murray, and J. New, “Surface dependence of Ge high-frequency high-gain transistors,” Solid-State Electronics, vol. 6, pp. 71–94, Apr., 1963.
    [2] W. Peter, E. Stanley, T. James, D. Victor, and R. Darryl, “1μm MOSFET VLSI technology: logic-circuit design methodology and applications,” IEEE Journal of Solid-State Circuits, vol. sc-14, no. 2, pp. 333–346, Apr., 1979.
    [3] M. Shinichiro, D. Takakuni, M. Yasuyuki, A. Takahko, S. Satoshi, and Y. Junzo, “1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS, ” IEEE Journal Of Solid-State Circuits, vol. 30, no. 8, pp. 847–854, Aug., 1995.
    [4] Texas Instruments, “The Chip that Jack Built,” 29, May, 2008.
    [5] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S.Philip Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. of the IEEE, vol. 89, pp. 259–288, Mar., 2001.
    [6] K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc. of IEEE, vol. 91, pp. 305–327, Feb., 2003.
    [7] H. Shang, M. M. Frank, E. P. Gusev, J. O. Chu, S. W. Bedell, K. W. Guarini, M. Leong, “Germanium channel MOSFETs: opportunities and challenges,” IBM J. Res. and Dev., vol. 50, pp. 377–386, Sep., 2006.
    [8] B. Yu, Y. Wang, H. Wang, Q. Xiang, C. Riccobene, S. Talwar, M. R. Lin, “70nm MOSFET with ultra-shallow, abrupt, and super-doped SID extension implemented by laser thermal process (LTP),” IEDM, pp. 509–512, Dec. 1999.
    [9] P. Emma and E. Kursun, “Opportunities and challenges for 3D systems and their design,” IEEE Design & Test of Computers, vol. 26, pp. 6–14, Oct., 2009.
    [10] M. Lapisa, G. Stemme, and F. Niklaus, “Wafer-level heterogeneous integration for MOEMS, MEMS, and NEMS,” IEEE J. Sel. Top. Quan. Electron., vol. 17, pp. 629–644, Jan., 2011.
    [11] 劉建惟, “三維積體電路直通矽穿孔技術之應用趨勢與製程簡介,” 奈米通訊20卷, pp. 20–27, 2013.
    [12] Q. Qi, T. Zhang, S. Wang, X. Zheng, “Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery,” Sensors and Actuators B: Chemical, vol. 137, issue. 2, pp. 649–655, Apr., 2009.
    [13] R.L. Vander Wal, G.W. Hunter, J.C. Xu, M.J. Kulis, G.M. Berger, T.M. Ticich, “Metal oxide nanostructure and gas-sensing performance,” Sensors and Actuators B: Chemical, vol. 138, issue 1, pp. 113–119, Apr., 2009.
    [14] F. Rock, N. Barsan, U. Weimar, “Electronic nose: current status and future trends,” Chem. Rev., vol. 108, issue 2, pp.705–725, Jan., 2008.
    [15] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, “Zinc oxide nanostructures for NO2 gas–sensor applications: a review,” Nano-Micro Lett. vol. 7, issue. 2, pp. 97–102, Dec., 2014.
    [16] C. Gopalan, P. Chakraborty, Y. Jinman, K. Taehoon, W. Zhiyuan, M. McCartney, S. Goodnick, M. Kozicki, and T. Thornton, “Shallow source/drain extensions for deep submicron MOSFETs using spin-on-dopants,” IEEE Transactions on Electron Devices, vol. 50, no. 5, pp. 1277–1283, May, 2003.
    [17] J. Lee, M. Uhm, W. Lee, S. Hwang, I. Chung, B. Park, D. Kim, Y. Jeong, and D. Kim, “Si NW-CMOS hybrid common-source amplifier as a voltage-readout hydrogen ion sensor,” IEEE Electron Device Lett.,” vol. 34, no. 1, pp. 135–137, Jan., 2013.
    [18] B. Koo, F. Ziwei. L. Godet, R. Svetlana, C. Christophe, C. Gilles, A. Grouillet, and D. Lenoble, “Plasma diagnostics in pulsed plasma doping (P2LAD) system,” IEEE Trans. Plasma Science, vol. 32, no. 2, pp. 456–463, Apr., 2004.
    [19] D. Mathiot, A. Lachiq, A. Slaoui, S. Noel, J. Muller, and C. Dubois, “Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing,” Materials Science in Semiconductor Processing, vol. 1, no. 3-4, pp. 231–236, Dec., 1998.
    [20] K. Ali, S. Khan, and M. Jafri, “Spin-on doping (SOD) and diffusion temperature effect on recombinations/ideality factor for solar cell applications,” Chalcogenide Letters, vol. 9, no. 11, pp. 457–463, Nov., 2012.
    [21] D. Mathiot, A. Lachiq, A. Slaoui, S. Noel, J. Muller, and C. Dubois, “Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing,” Materials Science in Semiconductor Processing, vol. 1, no. 3-4, pp. 231–236, Dec., 1998.
    [22]. S. Wilson, W. Paulson, R. Gregory, A. Hamdi, and F. Mcdaniel, “Rapid isothermal annealing of as-implanted, p-implanted, and b-implanted silicon,” Journal of Applied Physics, vol. 55, no. 12, pp. 4162–4170, Feb., 1984.
    [23] T. Sedgwick, A. Michel, V. Deline, S. Cohen, and J. Lasky, “Transient boron-diffusion in ion-implanted crystalline and amorphous-silicon,” Journal Of Applied Physics, vol. 63, no. 5, pp. 1452–1463, Oct., 1988.
    [24] D. Seung-Woo , K. Seong-Ho, and L. Yong-Hyun, “Ultra-shallow junction formation using plasma doping and excimer laser annealing fornano-technology cmos applications,” Journal of the Korean Physical Society, vol. 55, no. 3, pp. 1065–1069, Sep., 2009.
    [25] B. Koo, F. Ziwei. L. Godet, R. Svetlana, C. Christophe, C. Gilles, A. Grouillet, and D. Lenoble, “Plasma diagnostics in pulsed plasma doping (P 2 LAD) system,” IEEE Trans. Plasma Science, vol. 32, no. 2, pp. 456–463, Jun., 2004.
    [26]H. Sungho, and H. Hyunsang, “Ultra-shallow junction formed by plasma doping and laser annealing,” 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors, pp. 79–83, Oct., 2006.
    [27] T. Hayakawa, Y. Nakashima, M. Miyamoto, K. Koyama, K. Ohdaira, and H. Matsumura, “Low temperature phosphorus doping in silicon using catalytically generated radicals,” Japanese Journal of Applied Physics, vol. 50, pp.121301-1–5Nov., 2011.
    [28] M. Koyanagi, T. Fukushima, and T. Tanaka, “High-density through silicon vias for 3-D LSIs,” Proc. IEEE, vol. 97, pp. 49–59, Feb., 2009.
    [29]張致吉, “3D IC 材料的新市場機會與挑戰,”工業材料雜誌, 310 期, 2012.
    [30] Y. Feng, Susan L. Burkett, “Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite,” Journal of Vacuum Science & Technology B, vol. 33, 022004, Feb. 2015.
    [31] C. Wagner, K. Hauffe, “The stationary state of catalysts in homogeneous reactions,” Ztschr. Elektrochem, vol. 33, pp.172, Jun., 1921.
    [32]G. Korotcenkov, “HandBook of Gas Sensor Materials Volume 1: Properties, Advantages and shortcoming for Applications”, Springer Science Business Media, 2013.
    [33] Y. C. Liang , W. K. Liao, X. S. Deng, “Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures,” Journal of Alloys and Compounds, vol.599, pp.87–92, Jun., 2014.

    Reference in Chapter 2
    [1] J. L. Vossen and W. Kern, “Thin flim processes, academic press,” New York, pp. 131, 1978.
    [2] C. Y. Chang and S. M. Sze, “ULSI technology,” McGraw-Hill, New York, pp. 380, 1996.
    [3] Taro Hayakawa, Yuki Nakashima, Motoharu Miyamoto1, Koichi Koyama, Keisuke Ohdaira, Hideki Matsumura, “Low temperature phosphorus doping in silicon using catalytically generated radicals”, Japanese Journal of Applied Physics Vol. 50, No. 12R, pp. 121301, Nov., 2011.
    [4] Hironobu Umemoto1, Yushin Nishihara1, Takuma Ishikawa1, and Shingo Yamamoto, “Catalytic decomposition of PH3 on heated tungsten wire surfaces,” Japanese Journal of Applied Physics, Vol. 51, No. 8R, pp.086501, Jul., 2012.
    [5] Hans-Jürgen Butt, K. Graf, M. Kappl, “Physics and chemistry of interfaces 3rd edition”, 2013
    [6] National Cheng Kung University Center for Micro/Nano Science and Technology.
    [7] Evans Analytical Group Specialists in Materials Characteristics.
    [8] National Cheng Kung University Center for Micro/Nano Science and Technology.
    [9] Donald A. Neamen, “Semiconductor physics and devices: basic principles-3rd ed.,” McGraw-Hill, New York, 2003.
    [10] A. Lin, N. Patil, K. Ryu, A. Badmaev, L. Arco, C. Zhou, S. Mitra, and H. Philip Wong, “Threshold voltage and on–off ratio tuning for multiple-tube carbon nanotube FETs,” IEEE Transactions On Nanotechnology, vol. 8, no. 1, pp. 4–9, Jan., 2009.
    [11] H. Wong, J. Appenzeller, V. Derycke, R. Martel, S. Wind, P. Avouris, “Carbon nanotube field effect transistors—fabrication, device physics, and circuit implications,” Solid-State Circuits Conference, vol.1, pp. 370–371, Feb., 2003.
    [12] J. Guo, A. Javey, H. Dai, and M. Lundstrom, “Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors,” Electron Device Meeting (IEDM), International, pp. 703–706, Dec., 2004.
    [13] C.H. Jan, M. Agostinelli, M. Buehler, Z.P. Chen, S.J. Choi, G. Curello, H. Deshpande, S. Gannavaram, W. Hafez, U. Jalan, “A 32 nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra-low power, high performance, and high density product applications,” IEEE International Electron Devices Meeting, Baltimore (IEDM), pp. 1–4, Dec., 2009..
    [14] Noriyuki Miyata, “Study of direct-contact HfO2/Si interfaces,” Materials, vol.5, pp. 512–527, Mar., 2012.
    [15] G. He, Q. Fang, M. Liu, L.Q. Zhu, L.D. Zhang, “The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films,” Journal of Crystal Growth, vol.268, pp.155–162, Jul., 2004.
    [16] Martin J Walker, “Comparison of Bosch and cryogenic processes for patterning high aspect ratio features in silicon,” SPIE Proceedings, vol.4407, pp. 89–99, Apr., 2001.
    [17] D. Kohl, “The role of noble-metals in the chemistry of solid-state gas sensors,” Sensors Actuators B, vol. 1, no. 1-6, pp. 158–165, Jan. 1990.
    [18] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone,” Journal of Materials Science, vol. 40, no. 16, pp. 4383–4385, Aug 2005.
    [19] Y. Wang J. Chen, X. Wu, “Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide,” Materials Letters, vol. 49, no. 6, pp. 361–364, Jul 2001.
    [20] Masatake H., “Novel catalysis of gold deposited on metal oxides,” Catalysis Surveys of Japan, vol. 1, no. 1, pp. 61–73, Mar. 1997.

    Reference in Chapter 4
    [1]H. Umemoto, Y. Nishihara, T. Ishikawa, and S. Yamamoto, “Catalytic decomposition of PH3 on heated tungsten wire surfaces,” Japan Journal Of Applied Physics, vol. 51, no. 8, pp. 086501-1-086501-9, Aug. 2012.
    [2] S. B. Concari1 and R. H. Buitrago, “Raman monitoring laser-induced phase transformation in microcrystalline silicon thin films prepared by PECVD,” Semicond. Sci. Technol, vol. 18, no. 9, pp. 864–869, Sep. 2003.
    [3] G. Celler, ” Frontiers of silicon-on-insulator,” Journal of Applied Physics, vol. 93, no. 9,pp. 4955–4978, May, 2003.
    [4] Jean Pierre Colinge, “Silicon-on-insulator technology: materials to VLSI”, Boston, MA: Kluwer, 1997.
    [5] S. Maurya, L. C. Tribedi, R. Maringanti, “Engineering of silicon/HfO2 interface by variable energy proton irradiation”, Applied Physics Letters, vol. 105, pp. 071605, 2014
    [6] N. Miyata, “Study of direct-contact HfO2/Si Interfaces,” Materials, vol.5, pp. 512–517, 2012
    [7] G. He, Q. Fang, M. Liu, L.Q. Zhu, L.D. Zhang, “The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films”, Journal of Crystal Growth, vol. 268, pp.155–162, 2004
    [8] S.J. Chang, T. J. Hsueh, I. C. Chen, B. R. Huang,” Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles,” Nanotechnology, vol. 19, pp.175502, 2008

    下載圖示 校內:2021-07-06公開
    校外:2021-07-06公開
    QR CODE