簡易檢索 / 詳目顯示

研究生: 陳威德
Chen, Wei-Te
論文名稱: 新式超常材料之負折射應用
The Negative Refraction and Applications of a Novel Metamaterials
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 93
中文關鍵詞: 超常材料負折射
外文關鍵詞: negative refraction, metamaterial
相關次數: 點閱:79下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體是由週期性排列所組成的結構,假若經由適度的設計則具備控制光波傳遞的效果。也因為二十年前Yablonovitch與John對光子晶體性質的發現,光子晶體吸引了學者做廣泛的研究。由於可藉由變數來設計光子晶體能隙的範圍,不計其數的文獻致力於光子晶體中的缺陷應用。近幾年,將研究延伸至傳導區獨特的新現象,例如: 超稜鏡、自我對準效應、負折射以及透鏡聚焦。
    而負折射的另一項重大的應用就是由Notomi首先提出的“開放式共振腔”。本文將針對所提出的新式晶格排列由其基本性質到應用做深入地探討,利用平面波展開法、有限元素法、及時域有限差分法來檢視Archimedean-4的性質;與正方晶格、三角晶格相較可縮小物件的尺寸、減少材料、降低成本;與Archimedean-1相較,符合負折射應用的頻域也較廣。關於負折射方面應用上: Archimedean-4亦可產生自我準直效應;完美透鏡聚焦上藉由頻率的改變可使聚焦位置改變進而產生平面波。而運用光子晶體形成具有負折射開放式共振腔的設計上,有許多參數必須加以考量,比方:晶格的種類、晶格週期、柱體或空氣洞的直徑、材料以及開放式共振腔的幾何外貌。結果可藉由第一TE能帶的 產生共振現象,並發現藉由加入不同折射率之材料可使共振頻率呈線性偏移。此新式晶格排列除了能應用於自我準直、完美透鏡之聚焦以及共振腔生醫感測,或許能為積體光學光迴路帶來新的應用。

    Photonic crystals (PhCs) are synthetic periodic structures that, when suitably designed, have the ability to control the propagation of light. It has attracted extensive research over the last two decades following Yablonovitch and John. Because the photonic band gap can be purposely designed, the vast majority of research in this field has been devoted to applications of the bandgap and defects in PhCs. Recently, this research has been extended to new transmission phenomena, such as the superprism, self-collimation, negative refraction, and slab lens.
    Another important application of negative refraction is the “open cavity”, originally proposed by Notomi for PhCs. In the present studies, we investigated the energy band properties of Archimedean-4 lattices with the plane wave expansion method, the finite element method, and the finite-difference time-domain method. Compared with square, triangular lattices, Archimedean-4 can shrink into smaller scale and reduce the cost. The Archimedean-4 has wider frequency domain to fit the condition of negative refraction than the Archimedean-1 lattice. In the application of negative refraction, Archimedean-4 can form self-collimation effect. The position of focus form by the Perfect lens can change by tunning frequencies of the source. Perfect lens even can form a plan wave. To form an open cavity using PhCs with negative refraction, there are many parameters to optimize, such as the lattice type, lattice period, the diameter of the hole or rod, materials, and the geometrical configurations. It is shown that resonance can occur at the first TE band with . A small change of the refractive index of the measurand (filling only the three air wedges and not the holes in the PhCs) will cause a linear shift in the resonant wavelength. The novel lattices not only provide for several applications such as self-collimation, perfect lens, and biosensor but also have novel applications- in the photonic integrated circuit.

    摘要 I 誌謝 IV 目錄 V 圖目錄 VII 符號說明 X 第一章 緒論 1 1-1前言 1 1-2 光子晶體負折射簡介 1 1-3 文獻回顧 3 1-3-1光子晶體討論 3 1-3-2光子晶體共振腔回顧 4 1-4 本文架構 5 第二章 數值方法 16 2-1 前言 16 2-2 平面波展開法 16 2-2-1 倒晶格(Reciprocal lattice) 16 2-2-2布里淵區(Brillonin zone) 17 2-2-3 布拉克理論(Bloch Theorem) 17 2-2-4 平面波展開法推導 17 2-2-5 介電常數密度 21 2-2-6 完美光子晶體結構之計算實例 22 2-3 有限元素法 24 2-3-1 有限元素推導 24 2-3-2 邊界條件(boundary condition) 25 2-4 時域有限差分法 26 2-4-1 時域有限差分法推導 26 2-4-2 匹配吸收層 28 第三章 光子晶體排列與負折射現象 40 3-1 前言 40 3-2 等頻圖分析與光子晶體負折射 40 3-3 等頻圖與時域有限差分模擬之誤差 43 3-4 數值方法之驗證與分析 43 3-5 運算特點 46 第四章 光子晶體排列之延伸 65 4-1 晶格排列之延伸 65 4-2 Archimedean-4晶格討論 65 4-3 Archimedean-4應用於完美透鏡 67 4-4 Archimedean-4應用於開放式共振腔 69 第五章 結論與未來展望 87 5-1 綜合結論 87 5-2 未來展望與建議 87 參考文獻 89 自述 93

    [1] E. Yablonovitch,“Inhibited spontaneous emission in solid-state physics and electronics,”Physical Review Letters, Vol.58, No. 20, pp.2059-2062(1987).
    [2] S. John, “Strong localization of photons in certain disorded dielectric superlattices,”Physical Review Letters, Vol.58, No.20, pp.2486-2489(1987).
    [3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N. J., 1995).
    [4] B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms”Opt. Exp. B Vol.14, No.6, pp.2413-2422 (2006).
    [5] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, No.9, pp.1212 (1999).
    [6] X. Yu, S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett., Vol.83, No.16, pp.3251-3253(2003)
    [7] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, No.5, pp.604 (2003).
    [8] P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “I Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. Vol.92, No.12, pp.127401 (2004).
    [9] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and ,” Sov. Phys. Usp. 10, No.4, pp.509-514(1968)
    [10] S. A. Ramakrishna, “Physics of negative refraction index materials,” Rep. Prog. Phys. 68, pp.449-521 (2005)
    [11] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76 , No.25, pp.4773(1996)
    [12] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, Issu.11, pp.2075(1999)
    [13] C.G. Parazzoli, et. al., “Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law,”Phys. Rev. Lett. Vol.90, No.10,pp.107401(2003)
    [14] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,”Phys. Rev. Lett. 85, No.18, pp.3966-3369(2000)
    [15] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, No.16, pp.10696 (2000).
    [16] B. Gralak, S. Enoch and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, No.6, pp.1012-1020(2000).
    [17] R. Gajie, R. Meisels, F. Kuchar, and K. Hingerl, “Refraction and rightness in Photonic crystals,” Opt. Express, Vol. 13, No. 21, pp.8596-8605(2005)
    [18] Y.-F. Chen, P. Fisher, and F. W. Wise, “Sign of the refractive index in a gain medium with negative permittivity and permeability,”J. Opt. Soc. Am. B 23, No.1, pp.45-20(2006)
    [19] C. Luo, S.G. Johnson, D.J. Joannopoulos, amd J.B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, No.20, pp.201104 (2002).
    [20] R. A. Shelby, D. R. Smith and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No.6, pp.77(2001)
    [21] H. Takeda and K. Yoshino, “Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals,” Phys. Rev. E 67, No.5, pp.056607(2003)
    [22] C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, No.4, pp.045133(2005)
    [23] Y.Y. Wang and L. W. Chen, “Tunable negative refraction photonic crystals achieved by liquid crystals,” Opt. Express, Vol. 14, No.22, pp. 10580-10587(2006)
    [24] D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, “Electro-Optic control of the superprism effect in photonic crystals,” Appl. Phys. Lett. 82, No.19, pp.3176(20003)
    [25] S. Xiong and H. Fukshima, “Analysis of light propagation in index-tunable photonic crystals,” J. Appl. Phys. 94, No.2, pp.1286-1288(2003)
    [26] D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B, Vol. 53, No.11, pp.7134-7142(1996)
    [27] J. L. Atwood, “Kagomé lattice: A molecular toolkit for magnetism,” Nat. Mater. Vol.1, pp.91-92(2002)
    [28] C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys. Rev. E, Vol.56, No.6, pp.R6291-6293 (1997)
    [29] L.F. Marsal, T. Trifonov, A. Rodr,-guez, J. Pallar,es, R. Alcubilla, “Larger absolute photonic band gap in two-dimensionalair–silicon structures,” Physica E, Vol.16 ,pp. 580 – 585(2003)
    [30] W. Kuang, Z. Hou, Y. Liu and H. Li, “The bandgap of a photonic crystal withtriangular dielectric rods in a honeycomb lattice,” J. Opt. A: Pure Appl. Opt. Vol.7, No.10, pp.525-528(2005)
    [31] T. Baba and T. Matsuzaki, “Theoretical calculation of photonic gap in semiconductor 2-dimensional photonic crystals with various shpaged of optical atoms,” Jpn. J. Appl. Phys., Part 1 Vol. 34, No.8B, pp.4496-4498(1995)
    [32] X. –H. Wang, B. –Y. Cu, and G. –Z. Yang, “Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,” Phys. Rev. B, Vol.60, No.16, pp.11417-11421
    [33] S. Feng, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Imaging properties of an elliptical-rod photonic-crystal slab lens,” Phys. Rev. B, Vol.72, No.7, pp.075101-075101(2005)
    [34] Z. Tang, R. Peng and D. Fan, “Absolute left-handed behaviors in a triangular elliptical-rod photonic crystal,” Opt. Express, Vol. 13, No.24, pp.9796-9803(2005)
    [35] P. R. Villeneuve and M. Piche, “Photonic band gaps in two dimensional square and hexagonal lattices,”Phys. Rev. B, Vol. 46, No.8, pp.4969-4972(1992)
    [36] N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes”,J. Appl. Phys., Vol. 91, Issue.6, pp.3501-3510(2002)
    [37] T. Pan, F. Zhuang, and Z. –Y. Li, “The effect of etching interfacial layers on the absolute photonic band gap in two-dimensional photonic crystals,” Solid State Commun. Vol.128, No.5, pp.187-191(2003)
    [38] T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, R. Alcubilla, “Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B, Vol.70, No.19, pp.195108-(2004)
    [39] H. Kurt, and D. S. Citrin, “Annular photonic crystals,” Opt. Express, Vol.13, No.25, pp.10316-10326(2005)
    [40] P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tenability, and coupling efficiency,” ,Phys. Rev. B, Vol.54, No.11, pp.7837-7842(1996)
    [41] M. Qiu, S. He “Numerical method for computing defect modes in two dimensional photonic crystals with dielectric or metallic inclusions,” Phys. Rev. B, Vol. 61, No.19, pp.(2000)
    [42] A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators” , J. Vac. Sci. Technol. B, Vol.16, No.6, pp.3906-3910(1998)
    [43] N. Engheta, “ An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Lett., Vol.1, Issu.1, pp.10-13(2002)
    [44] Z. Ruan and S. He, “Open cavity formed by a photonic crystal with negative effective index of refraction,” Opt. Lett., Vol.30, Issu.17, pp.2308-2310(2005)
    [45] Y. Jin, S. He, “Negative refraction of complex lattices of dielectric cylinders,” Phys. Lett. A, Vol.360, pp.461-466(2007)
    [46] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures,” Phys. Rev. Lett., Vol.65, No.25, pp.3152-3155(1990)
    [47] J. Yonekura, M. Ikeda and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” Journal of Lightwave Technology, Vol.17, No.8, pp.1500-1508(1999)
    [48] S. –T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” Journal of Lightwave Technology, Vol.7, pp.2033-2038(1989)
    [49] J. Min, “The finite element method in electromagnetic,” John Wiley & Sons, Inc., New York, 2002
    [50] K. S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,”IEEE Transactions on Antennas and Propagation, Vol.14,No.3, pp.302-307(1996)
    [51] A. Taflove and S. C. Hagness, Computational electrodynamics: The finite-difference time-domain method, Artech House, Boston (2000).
    [52] S. David, A. Chelnokov, and J.-M. Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings,” Opt. Letters, Vol. 25, Issu.14, pp. 1001-1003(2000)
    [53] A. Martínez and J. Martí, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B ,Vol.71,No.23, pp.235115 (2005)
    [54] R. Gajie, R. Meisels, F. Kuchar, and K. Hingerl, “All angle left-handed negative refraction in Kagome and honeycomb lattice photonic crystals,” Phy. Rev. B, Vol. 73, No.16, pp.165310(2006)
    [55] G. Sun, A. Bakhtazad, A. Jugessur and A. G. Kirk, ‘”Open cavities using photonic crystals with negative refraction,” Photonics North., Vol. 6343, pp.63433(2006)

    下載圖示 校內:2008-07-10公開
    校外:2008-07-10公開
    QR CODE