簡易檢索 / 詳目顯示

研究生: 王亭鈞
Wang, Ting-Chun
論文名稱: 高溫同步脫硫除塵研究
Simultaneous High-temperature Desulfurization and Removals of Particulates
指導教授: 王鴻博
Wang, H. Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 101
中文關鍵詞: XANESEXAFS除塵高溫脫硫
外文關鍵詞: desulfurization, removals of particulates, XANES, EXAFS
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高溫同時去除粒狀物及硫化物可提高能源效率,本研究項目包括:(1)奈米或分子簇在高溫除硫之化學結構研究;(2)研發新型Raney態高溫脫硫吸附劑;(3)高溫同步脫硫除塵研究;及(4)基本工程設計。
    程溫硫化(TPS)結果顯示, ZnO/TiO2於較高溫度發生硫化(>960 K)但氧化再生則在較低溫(<650 K)進行,可能是ZnO與TiO2涉化學反應;分子簇ZnO (ZnO/MCM-41)則於較低溫硫化(703-823 K)並於較高溫(920-1030 K)氧化再生。
    Raney copper及iron之高溫脫硫研究,結果顯示ZnO/R-Fe2O3及CuO/R-Fe2O3 之除硫利用率(34-43%)隨溫度而上升,但ZnO/R-CuO於高溫較不穩定(>1073 K)。XANES光譜顯示吸收劑中之CuO與CuO以二價態為主,並顯示有大於94%之吸收劑被氧化再生。EXAFS 數據顯示於硫化反應中,Cu-Cu鍵距減少0.11 Å,Zn-Zn則增加0.06 Å。經由計算在873 K之下,ZnO/R-CuO具有較大之硫化速率。ZnO/R-CuO、ZnO/R-Fe2O3、CuO/R-Fe2O3之活化能則分別為114.8, 155.8 and 89.4 kJ/mol。
    加入30%之氧化銅及氧化鋅於陶瓷過濾網可同時去除硫化氫及粒狀物。氧化鋅及氧化銅之除硫轉化率約為55-63%,並可有效去粒狀物達95%以上。實驗顯示,加入吸收劑幾不影響陶瓷過濾網之粒狀物去除率。根據XANES圖譜在ZnO/CF 及CuO/CF中,大於92%除硫吸收劑氧化再生(873 K)。
    由文獻指出,同步脫硫除塵系統可有效提升IGCC之熱能利用率達6%。因此跟據實驗術結果之基本數據,初步設計高溫(873 K)脫硫除塵整合系統,以提供一經濟有效之方法。

    Simultaneous desulfurization and removals of particulates in the high temperature raw syngas can highly improve thermal efficiencies of integrated gasification combined cycle (IGCC). The main objective of this work was to study: (1) speciation of nano ZnO during high-temperature, (2) high-temperature desulfurization with ZnO and CuO in Raney CuO or Fe2O3, (3) simultaneous high-temperature desulfurization and particulates control with ZnO and CuO on ceramic filters and (4) basic engineering design for simultaneous desulfurization and removals of particulates at high temperatures.
    Experimentally, TPS (temperature programmed sulfurization) and TPO (temperature programmed oxidization) data indicated that nano ZnO could be effectively sulfurized at 873 K and regenerated (with air) at 950 K. ZnO/TiO2 (with strong metal-support interactions (SMSI)) could be sulfurized at >960 K, and interestingly, regenerated at much lower temperatures (e.g., <650 K). On the contrary, ZnO clusters (sub-nano) could be sulfurized at lower temperatures (703-823 K) and oxidized at higher temperatures (920-1030 K).
    Speciation of ZnO/R-CuO, ZnO/R-Fe2O3 and CuO/R-Fe2O3 in sulfurization and regeneration of zinc and copper was studied by XANES. Mainly, Zn(II) and Cu(II) were found in ZnO/R-CuO. The least-square fits of the XANES spectra suggested that the regeneration ratio of ZnO/R-CuO was ZnO (97%) and CuO (97%). 95% ZnO and 94% CuO in regenerated ZnO or CuO/R-Fe2O3 were also observed. The degree of sulfurization for ZnO/R-Fe2O3 and CuO/R-Fe2O3 was enhanced (34-43%) by temperatures (873-1073 K). Interestingly, the decrease sulfurization degree of ZnO/R-CuO was observed at 1073 K. After sulfurization, bond distance of Cu-Cu was decreased by 0.11 Å. Zn-Zn possessed an increase bond distance by 0.06 Ǻ.
    The removals efficiency of particulates for ceramic filter was over 95%. The impregnation of ZnO and CuO on ceramic filter was little effected filtration efficiency. Degrees of sulfurization for ZnO or CuO on ceramic were (55-63%) which might be applicable in engineering. By XANES fitting, the main species of regenerated ZnO or CuO on ceramic filter were ZnO (94 %) and CuO (92%). Bond distance of Cu-Cu was decreased by 0.02 Å after sulfurization. In sulfurization ZnO/CF, bond distance of Zn-Zn was 3.31 Å with increasing bond distance by 0.1 Å.
    Design of simultaneous desulfurization and removals of particulates is based on experiment data. With 2000 m3/h, the filter area of 120 m2 and 11 kg absorbents (ZnO) are needed for removals of particulates and desulfurization. Two series reactors provide 99% removal efficiency of H2S and particulates at 873 K.

    中文摘要 I Abstract III 誌謝 V CONTENT VI LIST OF FIGURES VIII LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE SURVEY 3 2.1 IGCC 3 2.2 Air pollution control devices 2.2.1 H2S 2.2.2 Removal of H2S 2.2.3 Particulate Matters 2.2.4 Removal of particulates 2.2.5 High-temperature filters 2.3 Absorbents 2.4 Raney metals CHAPTER 3 EXPERIMENTAL METHODS AND APPARATUS 24 3.1 Preparation of Absorbents 3.2 Desulfurization (and Regeneration) systems 3.3 Characterization CHAPTER 4 RESULTS AND DISCUSSION 30 4.1 Speciation of Nano ZnO during High-temperature Desulfurization 4.2 High-temperature Desulfurization with Raney Iron and Copper 4.3 Simultaneous High-Temperature Desulfurization and Removals of Particulates 4.4 Basic engineering design for Simultaneous Desulfurization and Removals of Particulates at high temperatures CHAPTER 5 CONCLUSION 91 REFERENCES 93

    Ayala RE, Marsh DW, Characterization and long range reactivity of zinc ferrite in high temperature desulfurization processes, Ind. Eng. Chem. Res. 30, 55-60 (1991).
    Ayala RE, Jain SJ, Development of durable mixed metal oxide sorbents for high temperature desulfurization of coal gases moving bed reactors, AICHE 1992 Annual Meeting (1992).
    Atimtay AT, Gasper-Galvin LD, Poston JA, Novel supported sorbent for hot gas desulfurization, Env. Sci. Technol., 27(7): 1295-1303 (1993).
    Akyurtlu A, Akyurtlu J, Hot gas desulfurization with vanadium-promoted Zinc ferrite sorbents, Gas Sep Purif , 9(1): 17-25 (1995).
    Akyurtlu A, Mixed metal oxide sorbents, NATO Advanced Study Indtitute on desulfurization of hot coal gas with regenerable metal oxide sorbents: new developments, Kusadasi, Izmir (1996).
    Ayala RE, Assessment of Coal gasification processes-relevance to sorbent development In Atimtay AA, Harrison DP Desufurization of hot coal gas, NATO ASI Ser 42, 41-56 (1996).
    Ayala RE, Application of IGCC technology in power generation, In Atimtay AA, Harrison DP Desufurization of hot coal gas, NATO ASI Ser 42, 75-102 (1996).
    Alvin MA, Advanced Ceramic Materials for Use in High-Temperature Particulate Removal Systems, Ind. Eng. Chem. Res., (35) 3384-3398 (1996).
    Abbasian J, Slimane RB, A regenerable copper-based sorbent for H2S removal from coal gases, Ind. Eng. Chem. Res., 37 2775-2782 (1998).
    Atimtay, AT, Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbent for H2S Cleanup from Coal Gas, Clean Products and Processes 197-208 (2001).
    Andreev A, Kafedjiiski V, Halachev T, Kuner B, Kaltchev M, Appl. Catal.78-199 (1991).
    Bisset LA, Strickland LD, Analysis of fixed bed gasifiner IGCC configuration, Ind Eng Chem Res., 30(1): 170-176 (1991).
    Burch R, Scire S, Selective catalytic reduction of nitricoxide with ethane and methane on some metal exchanged ZSM-5 zeolites, Appl. Catal. B, 3(4): 295–318 (1994).
    Ben-Slimane R, HepWorth MT, Desulfurization of Hot water gases with manganese based regenerable sorbents, Energy Fuels, 8(6): 1184-1191 (1994).
    Ben-Slimane R, HepWorth MT, Desulfurization of Hot water gases with manganese based regenerable sorbents, Energy Fuels, 9(2): 372-378 (1995).
    Brown C, Hohne P, Eliminating a sulfuric acid mist plume from a wet caustic scrubber on a petroleum coke calciner, Environment Progress, 20(3): 182-186 (2001)
    Birry L, Lasia, A Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes, Journal of Applied Electrochemistry, 34(7): 735-749 JUL (2004).
    Clift R, Gas Cleaning at High Temperatures, Blackie Academic & Professional, New York, (1993).
    Corma A, Martinez A, Martinezsoria V, Monton JB, Hydrocracting of vacuum gas–oil on the novel mesoporous MCM-41 aluminosilicate catalyst, J. Catal., 153(1): 25–31 (1995).
    Corma A, Martinez A, Hydrogenation of Aromatics in Diesel Fuels on Pt/MCM-41 Catalysts, Martinez-Soria, J. Catal., 169, 480 (1997).
    Chen G, Huang F, Wu X, Zhao Z, Duan J, Chemiluminescence determination of melatonin and some of its derivatives using potassium permanganate and formaldehyde system, Analytical and Bioanalytical Chemistry 376 (6): 873-878 (2003).
    Chuaha TG, Withers CJ, Seville J.P.K, Prediction and measurements of the pressure and velocity distributions in cylindrical and tapered rigid ceramic filters, Separation and Purification Technology, 40, 47–60 (2004).
    Dittler A, Hemmer G, High Temperature Gas Cleaning, Insitute fur Mechanische Verfahrenstechnik und Mechanik, Karlsruhe, (1999).
    Flytzani-Stephanopoulos M, Gavalas GR, Tamhankar SS, Sharma PK, Novel sorbents for high temperature regenerative H2S removal, DOE/MC 20417-1898 (DOE 86004261) (1985).
    Focht GD, Ranade PV, Harrison DP, “High Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics”, Chem. Eng. Sci., 43(11):3005-3013 (1988).
    Focht GD, Ranade PV, Harrison OP, High temperature desulfurization using zinc ferrite: solid structural property changes, Chern. Eng. Sci., 44(2):215-224 (1989a).
    Focht GO, Ranade PV, Harrison OP, High temperature desulfurization using zinc ferrite: regeneration kinetics and multicycle testing, Chern. Eng. Sci., 44(12): 2919-2296 (1989b).
    Flytzani-Stephanopoulos M, Kinetics of sulfidation reactions between H2S and bulk sorbents, In Atimtay AA, Harrison DP (eds) Desulfurization of hot coal gas, NATO ASI Ser 42, 179-212 (1996).
    Flytzani-Stephanopoulos M, Elemental Sulfur recovery form SO2-rich streams. In AA, Harrison DP (eds) Desulfurization of hot coal gas, NATO ASI Ser 42, 365-384 (1997).
    Grindley T, Steinfeld G, Development and testing of regenerable hot coal-gas desulfurization sorbents, DOE/MC/16545-1125 (1981).
    Gasper-Galvin LO, Atimtay at Hot gas desulfurization sorbent, US Patent 5,227,351, 13 July (1993).
    Garcia E, Cilleruelo C, Ibarra JV, Pineda M, Palacio JM, Kinetic study of high temperature removal of H2S by novel metal oxide sorbents, Ind. Eng. Chem. Res., 36 (3): 846-853 (1997).
    Gasper-Galvin LO, Atimtay AT, Gupta RP, Zeolite ¬supported metal oxide sorbents for hot-gas desulfurization, Ind Eng Chern Res, 37, 4157-4166 (1998).
    Garcia-Labiano F, Oe Oiego LF, Adanez J, Effectiveness of natural, commercial, and modified calcium-based sorbents as H2S removal agents at high temperatures, Environ Sci Technol, 33(2): 288-293 (1999).
    Garcia B, Takarada T, Ca ion-exchanged coal char as H2S sorbent, Fuel, 78(5): 573-581 (1999).
    Huang, YJ, Wang, HP, Reduction of NO with CH4 effected by copper-oxide clusters in the channels of ZSM-5, J. Phys. Chem. A, 103(33): 6514–6516 (1999).
    Hsiao M. C, Wang H. Paul, Wei YL, Chang Juu-En, Jou C. J, Speciation of copper in the incineration fly ash of a municipal solid waste, J. Hazardous Material, B91, 301-307 (2002).
    Huang YJ, Wang H. Paul, Lee JF, Catalytic reduction of NO on copper/MCM-41 studied by in situ EZAFS and XANES, Chemosphere 50, 1035 (2003).
    Hylander LD, Sollenberg H, Westas H, a three-stage system to remove mercury and dioxins in flue gases, Science of the Total Environment, 304(1-3): 137-144 MAR 20 (2003).
    Hogrefe O, Drewnick F, Lala GG, Schwab JJ., Demerjian KL, Development, operation and applications of an aerosol generation, calibration and research facility, Aerosol Science and Technology, 38, 196-214 Suppl. 1 (2004).
    Ivancsy T, Suda JM, Behavior of polydisperse dust in electrostatic precipitators, Journal of Electrostatics, 63(6-10): 923-927 JUN (2005).
    Jo YM, Huchison R, J. Raper A. PREPARATION OF CERAMIC MEMBRANE FILTERS, FROM WASTE FLY ASH, SUITABLE FOR HOT GAS CLEANING, Waste Management & Research, 14, 281–295 (1996).
    Konttinen J, Mojtahedi W, Gasifer Gas Desulfurization at High Temperature and Pressure, Repr Kemia-Kemi, 20, 847-851 (1993).
    Koh CA, Nooney R, Tahir S, Binary Cesium Lanthanum, Characterization and Catalytic Properties of Mcm-41 and Pd/Mcm-41 Materials, Catal. Lett., 47, 199 (1997).
    Kwon KC, Crowe ER, Gangwal SK, Reactivity of metal oxide sorbents for removal of sulfur compounds from coal gases at high temperature and pressure-Sep, Sci Technol, 2, 775-792 (1997).
    Kloetstra K.R, Van Laren, Van Beckkum, Binary Cesium Lanthanum Oxide-Supported on Mcm-41 - A New Stable Heterogeneous Basic Catalyst, J. Chem. Soc., 93, 1211 (1997).
    Keigo A, Toshimasa T, Yasumasa F, Development of a mixed integer programming model for technology development strategy and its application to IGCC technologies, Energy, 30, 1176-1191 (2005).
    Lew S, Jothimurugesan K, Stephanopoulos MF, High temperature H2S removal from fuel gases by regenerable zinc oxide-titanium dioxide sorbents, Ind. Eng. Chem. Res. 28(5): 535-541 (1989).
    Liu BJ, Cai TX, Selective hydrogenation of crotonaldehyde over Raney cobalt catalysts modified with heteropolyacid salts, REACTION KINETICS AND CATALYSIS LETTERS 80(1): 21-26 (2003).
    Millor JR, The Water Gas Shift Reaction: Deactivation Studies, PhD Thesis, WJU South Africa, (1993).
    Mojtahedi W, Salo K, Abbasian J, Desulforization of hot coal gas in fluidized bed with regenerable zinc titanate sorbents. Fuel Process Technol, 7, 55-65 (1994).
    Morey M, Davidson A, Eckert H, Stucky D, Pseudotetrahedral O3/2V=0 Centers Immobilized on the Walls of a Mesoporous, Cubic Mcm-48 Support - Preparation, Characterization, and Reactivity Toward Water as Investigated by V-51 NMR and UV-VIS Spectroscopies, Cham. Mater., 8, 486 (1996).
    MSDS database
    Meikap BC, Kundu G, Biswas MN, A novel modified multi-stage bubble column scrubber for SO2 removal from industrial off gases, Separation Science and Technology 37 (15): 3421-3442 (2002).
    Nieminen M, Simell P, Leppälahti J, Ståhlberg P, Kurkela E, in: Proc. 9th European Bioenergy Conference, Copenhagen, June 1996.
    Nagl, G, Controlling H2S emission, Chemical Engineering 125-131(1997).
    Patrick V, Gavalas R, Flyzani-Stephanopoulos M, Jothimurugisan K, High Temperature Sulfidation-Regeneration of CuO-Al2O3 Sorbent,. Ind. Eng. Chem. Res., 28, 931-940 (1989).
    Robin AM, Jung DY, Kassman JS, Leininger TF, Wolfenbarger JK, Yang PP, Integration and testing of hot desulfurization and entrained flow gasification for power generation system, 12th Annual gasification and gas cleanup systems contractors review meeting, Vol. I: 95-104 (1992).
    Puchyr DMJ, Mehrotra AK, Behie LA, Kalogerakis N, Hydrodynamic and kinetic modelling of circulating fluidized bed reactors applied to a modified Claus plant, Chemical Engineering Science, 51(24): 5251-5262 (1996).
    Pineda M, Fierro JLG, Palacios JM, Cilleruelo C, Garcia E, Ibarra JV., Characterization of zinc oxide and zinc ferrite doped with Ti or Cu as sorbents for hot gas desulfuri¬zation, Appl Surf Sci, 119, 1-10 (1997).
    Palomino, G.T, Bordiga, S, Zecchina, A, Marra, G.L, Lamberti, C, XRD, XAS, and IR characterization of copper-exchanged Y zeolites, J. Phys. Chem. B, 104 (36): 8641–8651 (2000).
    Rebekah A, Kelly Joy C, Andrews J, An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue, Microchemical Journal, 71, 231–245 (2002).
    Regional Air Quality Planning Committee of the Houston-Galveston Area Council
    Seville J.P.K, Clift,R, Withers CJ, Keidel W, Filtration Sep. 26(3): 265 (1989).
    Sasaoka E, Sakamoto M, Ichio T, Kasaoka S, Sakata Y, Reactivity and durability of iron oxide high temperature desulfurization sorbents, Energy Fuels 7(5): 632-638 (1993).
    Schmidt E, Gang P, Pilz T, High Temperature Gas Cleaning, Insitute fur Mechanische Verfahrenstechnik und Mechanik, Karlsruhe, (1996).
    Sage PW, World energy resources, their use and the envi¬ronment. In: Atimtay AA, Harrison DP (eds) Desulfurization of hot coal gas. NATO ASI Ser 42, 1-20 (1996).
    Sage PW, Mills, Overview of clean coal technologies and current status of the air blown gasification cycle, In: Atimtay AA, Harrison DP (eds) Desulfurization of hot coal gas. NATO ASI Ser 42, 21-40 (1996).
    Sofekun OA, Doraiswamy LK, High temperaure oxidation of zinc sulfide: kinetic modeling under conditions of strict kinetic control, Ind Eng Chern Res., 35(9): 3163-3170 (1996).
    Seville J.P.K, Gas Cleaning in Demanding Applications, Blackie Academic and Professional, Glasgow p, 96 (1997).
    Smith DH, Ahmadi G, Problem and progress in hot-gas filtration for pressurized fluidized bed combustor (PFBC) and integrated gasification combined cycle (IGCC), Aerosol Sci. Technol., 29, 163–169 (1998).
    Shreiber EH, Rhodes MD, Roberts GW, Methanol dehydrogenation with Raney copper in a slurry reactor, Applied Catalysis B-environmental, 23(1): 9-24 OCT 18 (1999).
    Sasaoka Eiji, and Sada Norimasa, Modification of ZnO-TiO2 High-Temperature Desulfurization Sorbent by ZrO2 Addition, Ind. Eng. Chem. Res., 38, 958 (1999).
    Schaack, J.P, Chan, F, H2S Scavenginh-1, Oil& Gas Journal 125-131 (1989).
    Thambimuthu K.V, Gas Cleaning for Advanced Coal-Based Power Generation, IEACR/53, IEA Coal Research, London, (1993).
    Tsai CJ, Miao CC, Lu HC, White smoke emission from a semiconductor manufacturing plant, Environment International 23(4): 489-496 (1997).
    Van der Ham AGJ, Heesink ABM, Prins W, Proposal for a regenerative high temperature process for coal gas cleanup with calcined limestone, Ind Eng Chem Res., 35(5): 1487-1495 (1996).
    Van der Ham AGJ, Vanderbosch RH, Prins W, Van Swaaji WPM, Survey of desulfurization processes for coal gas. In: Atimtay AA, Harrison DP(eds) Desulfurization of hot goal gas. NATO ASI Ser 42, 117-136 (1996).
    Westmoreland PR, Harrison DP, Evaluation of candidate solids for high temperature reaction between H2S and selected metal oxides, Environment Science Technology 10(7): 659-661 (1976).
    Wang Z, Richter H, Howard J, Jordan J, Carlson J, and Levendis Yiannis A., Laboratory Investigation of the Products of the Incomplete Combustion of Waste Plastics and Techniques for Their Minimization, Ind. Eng. Chem. Res., 43, 2873-2886 (2004)
    Yi SM, Ambs JL, Patashnick H, Rupprecht G, Hopke PK, Particle collection characteristics of a prototype electrostatic precipitator (ESP) for a differential TEOM system, Aerosol Science and Technology, 38, 46-51 Suppl. 2, (2004).
    Yasuo A, Hideyuki M, Osamu K, Ceramic honeycomb filter for hot gas cleaning, Gas Cleaning at High Temperatures, Blackie Academic & Professional, New York, (1993).
    Zhao H, Draelants Dirk J, Baron GV, Preparation and characterisation of nickel-modified ceramic filters, Catalysis Today, 56, 229–237 (2000).

    下載圖示
    2015-08-10公開
    QR CODE