| 研究生: |
廖威豪 Liao, Wei-hao |
|---|---|
| 論文名稱: |
修飾高分子閘極介電層於五環素場效電晶體的研究 Modification of polymer gate dielectrics on pentacene-based field-effect transistors |
| 指導教授: |
溫添進
Wen, Ten-chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 修飾介電層 、電晶體 |
| 外文關鍵詞: | OFET, SAM, dielectrics |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,將針對以自組裝層修飾高分子介電層進行元件特性探討,元件是以聚乙烯酚(PVP)/聚乙烯醇 (PVA)作為雙閘極介電層,並藉由浸泡的方法來將兩種不同極性自組裝層成長上去,分別是 (3-Aminopropyl)triethoxysilane、Trichloro (3,3,3trifluoropropyl )silane,來探討對元件的效能影響,並且配合原子力顯微鏡(AFM) 、X射線繞射(XRD)以及電壓-電容(C-V)的量測,觀察pentacene結晶成長與電荷累積的情形。結果顯示,經由自組裝層修飾的元件 其接觸角之改變,證實利用浸泡方法可將自組裝層成長在聚乙烯醇(PVA)上。由於N 型 有機場效電晶體的元件特性有降低的現象,可能是由於自組裝層與聚乙烯醇(PVA)中的氫氧基(OH)反應,造成表面氫氧基(OH)密度減少的緣故,間接證明氫氧基(OH)對於N型元件影響的程度,另外在有自組裝層修飾的元件,pentacene具有良好的結晶性,因此導致有良好雙載子(ambipolar)傳輸的特性,載子移動率分別為電子(NH2-SAMs:6.06*10-2cm2V-1s-1 、F-SAMs:9.20*10-2 cm2V-1s-1)、電洞(NH2-SAMs:3.67*10-2cm2V-1s-1 、F-SAMs:2.72*10-1 cm2V-1s-1)。
In this study, the effects of self-assembled layers on polymer gate dielectrics interfacial modification are investigated. The device used poly(4-vinyl phenol)/poly(4-vinyl alcohol)(PVA) as double-gate dielectrics, and used two different dipole self-assembled layers, (3-Aminopropyl)triethoxysilane、Trichloro (3,3,3trifluoropropyl)silane, were grown by the dipping method to study the effect of the efficiency of the device. Using atomic force microscope(AFM)、x-ray diffraction(XRD), and capacitance-voltage(C-V) instruments are to observe the pentacene crystal growth and charge accumulation. From the results, the SAMs-modified device, it found to the contact angle change which mean the SAMs grow on PVA layer. Because of the n-type OFET performances have decrease. It maybe the SAMs react with OH groups of PVA which make the OH groups density decrease on surface. This circumstantial evidence explained that the OH groups of PVA were main point which produces the n-type OFET performances. On the other hand, the SAM-modified device, have good crystal properties which result in have well-behavior ambipolar charge tansport properties. Electron mobility (NH2-SAMs: 6.06*10-2cm2V-1s-1 ;F-SAMs: 9.20*10-2cm2V-1s-1)、hole mobility (NH2-SAMs: 3.67*10-2cm2V-1s ; F-SAMs : 2.72*10-1 cm2V-1s-1).
1. Z. Bao, Adv. Mater. 12, 227 (2000).
2. H. E. Katz, Z. Bao, J. Phys. Chem. B, 104, 671 (2000).
3. A. R. Brown, C. P. Jarrett, D. M. deLeeuw, Matters, M. Synth. Met., 88, 37 (1997).
4. G. J. Horowitz, Mater. Chem. 9, 2021 (1999).
5. H. Klauk, T. N. Jackson, Solid State Technol. 43, 63 (2000).
6. H. E. Katz, Dodabalapur A., Z. Bao, In Handbook of Oligo and Polythiophenes; Fichou, D., Ed.; Wiley-VCH: Weinheim (1998).
7. A. J. Lovinger, L. Rothberg, J. J. Mater. Res. 11, 1581 (1996).
8. Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
9. S. M. Sze, Physics of Semiconductor Devices (Wiley, NewYork, 1981).
10. K. Y. Chung, and G. W., J. Appl. Phys. 62, 4617-4624 (1987)
11. G. Horowitz, Adv. Mater, 10, 365-377 (1998).
12. M. Shur, M. Hack, and G. S. John, J. Appl. Phys. 66, 3371-3380 (1989).
13. P. G. Le Comber, and W. E. Spear, Phys. Rev. Lett., 25, 509-511 (1970).
14. P. W. Anderson, Physical Review, 109, 1492-1505 (1958).
15. Gilles Horowitz, Adv. Mater, 10, 365-377 (1998).
16. Gilles Horowitz., J. Mater. Chem. 9, 2021-2026 (1999).
17. J. Bardeen and W. H. Brattain. Phys. Rev., 71, 230 (1948).
18. H. Kroemer, Proc. IRE , 45, 1535 (1957).
19. D. Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Surface Device,”in IRE Device Research Conference, Pittsburgh (1960).
20. C. K. Chiang, C. R. Fincher, Y. W. park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gan, and A. G. Macdiarmid, Phys. Rev. lett. 39, 1098 (1977).
21. A. Tsumura, H. Koezuka and T. Ando, Appl .Phys, Lett. 49, 1210 (1986).
22. C. D. Dimitrakopoulos and D. J. Mascaro, IBM, 45, 11-27 (2001)
23. C. D. Dimitrakopoulos, P. R. L. Malenfant , Adv. Mater. 14, 2 (2002).
24. S. L. Wright, L. F. Palmateer, H. Klauk, and T. N. Jackson "Amorphous SiGe:H Black Matrix Material for Active Matrix Liquid Crystal Displays" 38th Electronic Materials Conference Digest, 71, June (1996).
25. J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Device, Proceedings of NATO ASI, Spetses, Greece(Ed:R. M. Mertzger), Plenum, (New York 1989).
26. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
27. H. Sirringhaus, N. Tessler, R. H. Friend, Science. 280, 1741 (1998).
28. F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 54, 3255 (1983).
29. J. H. Burroughes, C. A. Jones, R. H. Friend, Nature. 335, 137 (1998).
30. H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett.63, 1372 (1993).
31. F. Gariner, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Severt, S. Ries, P.Alnot, J. Am. Chem. Soc. 115, 8716 (1993).
32. B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, Chem. Mater. 6, 1809 (1994).
33. A. Dodabalapur, L. Torsi, H. E. Katz, Science. 1995, 268, 270 (1995).
34. H. E. Katz, L. Torsi, A. Dodabalapur, Chem. Mater. 7, 2235 (1995).
35. R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. constant, F. Garnier, Adv. Mater. 9, 557 (1997).
36. R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, Adv. Mater. 9, 389 (1997).
37. J. H. Sch^n, C. Kloc, B. Batlogg, Org. Electron. 1, 57 (2000).
38. C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, J. Appl. Phys. 80, 2501 (1996).
39. Y. –Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, 54th Annual Device Research Conference Digest 1996, p.80. 58, 1500 (1991).
40. G. Horowitz, X. Peng, D. Fichou, F. Garnier, Synth. Met. 51, 419 (1992).
41. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
42. J. Kastner, J. Paloheimo, H. Kuzmany, in Solid State Sciences(Eds: H. Huzmany, M. Mehring, J. Fink), Springer., 515-521, (New York 1993) .
43. G. Guillaud, M. Al Sadound, M. Maitrot, Chem. Phys. Lett. 167, 503(1990).
44. Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
45. H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 63, 1372 (1993).
46. A. R. Brown, D. M. De Leeuw, E. J. Lous, E. E. Havinga, Synth. Met. 66, 257(1994).
47. Yagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 84, 813 (2004)
48. H. Klauk, G. Schmid, G. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nicols, and T. N. Jacson, Solid-State Electron. 47, 297 (2003).
49. A. R. Brown, C. P. Jarrett, D.M. de Leeuw, M. Matters, Synthetic Metals. 88 37-55 (1997).
50. G. Horowitz, J. Mater. Res., 19, 7 (2004).
51. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, Chem. Mater.;16(23) 4436 (2004).
52. Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Choa, Appl. Phys. Lett. 90 132104 (2007).
53. C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, and S. Lee, Adv. Funct. Mater. 17, 958-962 (2007).
54. J. Takeya , T. Nishikawa, T. Takenobu, S. Kobayashi, and Y. Iwasa T. Mitani, C. Goldmann, C. Krellner, and B. Batlogg, Appl. Phys. Lett. 85, 21, (2004).
55. Y. Jang, Jeong H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho. Appl. Phys. Lett. 90, 132104, (2007).
56. L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
57. T. B. Singh, F. Meghdadi, S. Gunes, N. Marjanovic, Gilles Horowitz, P. Lang, S. Bauer, N. S. sariciftci, Adv. Mater. 17, 2315-2320 (2005).
58. C. M. Hassan, N. A.Peppas, Advances in Polymer Science, 153.
59. A. R. Brown, A. Pomp, C. M. Hart, D.M. Deleeuw, Science, 270, 972 (1995)
60. K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, and B. Batlogg, J. Appl. Phys, 96, 11 (2004).
61. S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, P. Heremans, Appl. Phys. Lett, 85, 4400 (2004)
62. S. E. Fritz, T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B, 109, 10574 (2005).
63. A. D. Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett., 86, 263501 (2005).
64. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. 80, 2501 (1996).
65. M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett., 81, 2 (2002).
66. F. M. Heringdorf, M. C. Reuter and R. M. Tromp, Nature, 412, 517-520 (2001).
67. M. S. Kim, H. T. Kim, S. S. Chi, T. E. Kim, H. T. Shin, K. W. Kang,H. S. Park, D. J. Kim, K. S. Min, D. W. Kang and D. M. Kim, Journal of the Korean Physical Society, 43, 5 (2003).