簡易檢索 / 詳目顯示

研究生: 廖威豪
Liao, Wei-hao
論文名稱: 修飾高分子閘極介電層於五環素場效電晶體的研究
Modification of polymer gate dielectrics on pentacene-based field-effect transistors
指導教授: 溫添進
Wen, Ten-chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 77
中文關鍵詞: 修飾介電層電晶體
外文關鍵詞: OFET, SAM, dielectrics
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,將針對以自組裝層修飾高分子介電層進行元件特性探討,元件是以聚乙烯酚(PVP)/聚乙烯醇 (PVA)作為雙閘極介電層,並藉由浸泡的方法來將兩種不同極性自組裝層成長上去,分別是 (3-Aminopropyl)triethoxysilane、Trichloro (3,3,3trifluoropropyl )silane,來探討對元件的效能影響,並且配合原子力顯微鏡(AFM) 、X射線繞射(XRD)以及電壓-電容(C-V)的量測,觀察pentacene結晶成長與電荷累積的情形。結果顯示,經由自組裝層修飾的元件 其接觸角之改變,證實利用浸泡方法可將自組裝層成長在聚乙烯醇(PVA)上。由於N 型 有機場效電晶體的元件特性有降低的現象,可能是由於自組裝層與聚乙烯醇(PVA)中的氫氧基(OH)反應,造成表面氫氧基(OH)密度減少的緣故,間接證明氫氧基(OH)對於N型元件影響的程度,另外在有自組裝層修飾的元件,pentacene具有良好的結晶性,因此導致有良好雙載子(ambipolar)傳輸的特性,載子移動率分別為電子(NH2-SAMs:6.06*10-2cm2V-1s-1 、F-SAMs:9.20*10-2 cm2V-1s-1)、電洞(NH2-SAMs:3.67*10-2cm2V-1s-1 、F-SAMs:2.72*10-1 cm2V-1s-1)。

    In this study, the effects of self-assembled layers on polymer gate dielectrics interfacial modification are investigated. The device used poly(4-vinyl phenol)/poly(4-vinyl alcohol)(PVA) as double-gate dielectrics, and used two different dipole self-assembled layers, (3-Aminopropyl)triethoxysilane、Trichloro (3,3,3trifluoropropyl)silane, were grown by the dipping method to study the effect of the efficiency of the device. Using atomic force microscope(AFM)、x-ray diffraction(XRD), and capacitance-voltage(C-V) instruments are to observe the pentacene crystal growth and charge accumulation. From the results, the SAMs-modified device, it found to the contact angle change which mean the SAMs grow on PVA layer. Because of the n-type OFET performances have decrease. It maybe the SAMs react with OH groups of PVA which make the OH groups density decrease on surface. This circumstantial evidence explained that the OH groups of PVA were main point which produces the n-type OFET performances. On the other hand, the SAM-modified device, have good crystal properties which result in have well-behavior ambipolar charge tansport properties. Electron mobility (NH2-SAMs: 6.06*10-2cm2V-1s-1 ;F-SAMs: 9.20*10-2cm2V-1s-1)、hole mobility (NH2-SAMs: 3.67*10-2cm2V-1s ; F-SAMs : 2.72*10-1 cm2V-1s-1).

    目錄 中文摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 緒論 1 1-1 前言 1 1-2 有機半導體傳導機制 2 1-2-1能帶分析 2 1-2-2導電機制 3 1-2-3 傳導方式 4 1-2-3-1分子鏈上(intramolecular)的傳導 4 1-2-3-2分子鏈間(intermolecule)的傳導 5 1-2-3-3 MTR (Multiple trapping and Release) 5 1-3有機場效電晶體元件的發展 6 1-3-1有機場效電晶體的起源 6 1-3-2 FET與OFET的比較 7 1-3-3 有機電晶體元件的發展現況 8 1-4 有機場效電晶體概論 9 1-4-1 有機半導體材料 9 1-4-2 元件結構 10 1-4-3 工作原理 10 1-4-4 相關參數與公式 11 1-5界面修飾於場效電晶體的作用 14 1-6 研究動機與大綱 15 1-6-1研究動機 15 1-6-2大綱 16 第二章 元件製作與實驗步驟 28 2-1 藥品來源 28 2-2 元件製作 28 2-2-1 ITO基板的閘極圖案化 29 2-2-2 ITO玻璃基板之處理 30 2-2-3 閘極介電層的製作 31 2-2-4 真空熱蒸鍍有機半導體層 32 2-2-5 源極與汲極電極製作 32 2-2-6 元件的量測 33 2-2-7 原子力顯微鏡 33 2-2-8 多能X光薄膜繞射儀 33 2-2-9 靜態接觸角 34 第三章 結果與討論 43 3-1自組裝層修飾下表面特性的探討 43 3-2自組裝層修飾下表面型態的探討 43 3-3自組裝層修飾下結晶型態的探討 44 3-4自組裝層修飾下電荷累積的探討 45 3-5自組裝層修飾下電晶體的I-V特性分析 47 3-6 自組裝層修飾下電晶體效能的比較 49 3-7 結論 52 第四章 結論與建議 71 4-1 結論 71 4-2 未來的工作建議 72 參考文獻 73 自述 77

    1. Z. Bao, Adv. Mater. 12, 227 (2000).
    2. H. E. Katz, Z. Bao, J. Phys. Chem. B, 104, 671 (2000).
    3. A. R. Brown, C. P. Jarrett, D. M. deLeeuw, Matters, M. Synth. Met., 88, 37 (1997).
    4. G. J. Horowitz, Mater. Chem. 9, 2021 (1999).
    5. H. Klauk, T. N. Jackson, Solid State Technol. 43, 63 (2000).
    6. H. E. Katz, Dodabalapur A., Z. Bao, In Handbook of Oligo and Polythiophenes; Fichou, D., Ed.; Wiley-VCH: Weinheim (1998).
    7. A. J. Lovinger, L. Rothberg, J. J. Mater. Res. 11, 1581 (1996).
    8. Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
    9. S. M. Sze, Physics of Semiconductor Devices (Wiley, NewYork, 1981).
    10. K. Y. Chung, and G. W., J. Appl. Phys. 62, 4617-4624 (1987)
    11. G. Horowitz, Adv. Mater, 10, 365-377 (1998).
    12. M. Shur, M. Hack, and G. S. John, J. Appl. Phys. 66, 3371-3380 (1989).
    13. P. G. Le Comber, and W. E. Spear, Phys. Rev. Lett., 25, 509-511 (1970).
    14. P. W. Anderson, Physical Review, 109, 1492-1505 (1958).
    15. Gilles Horowitz, Adv. Mater, 10, 365-377 (1998).
    16. Gilles Horowitz., J. Mater. Chem. 9, 2021-2026 (1999).
    17. J. Bardeen and W. H. Brattain. Phys. Rev., 71, 230 (1948).
    18. H. Kroemer, Proc. IRE , 45, 1535 (1957).
    19. D. Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Surface Device,”in IRE Device Research Conference, Pittsburgh (1960).
    20. C. K. Chiang, C. R. Fincher, Y. W. park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gan, and A. G. Macdiarmid, Phys. Rev. lett. 39, 1098 (1977).
    21. A. Tsumura, H. Koezuka and T. Ando, Appl .Phys, Lett. 49, 1210 (1986).
    22. C. D. Dimitrakopoulos and D. J. Mascaro, IBM, 45, 11-27 (2001)
    23. C. D. Dimitrakopoulos, P. R. L. Malenfant , Adv. Mater. 14, 2 (2002).
    24. S. L. Wright, L. F. Palmateer, H. Klauk, and T. N. Jackson "Amorphous SiGe:H Black Matrix Material for Active Matrix Liquid Crystal Displays" 38th Electronic Materials Conference Digest, 71, June (1996).
    25. J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Device, Proceedings of NATO ASI, Spetses, Greece(Ed:R. M. Mertzger), Plenum, (New York 1989).
    26. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
    27. H. Sirringhaus, N. Tessler, R. H. Friend, Science. 280, 1741 (1998).
    28. F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 54, 3255 (1983).
    29. J. H. Burroughes, C. A. Jones, R. H. Friend, Nature. 335, 137 (1998).
    30. H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett.63, 1372 (1993).
    31. F. Gariner, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Severt, S. Ries, P.Alnot, J. Am. Chem. Soc. 115, 8716 (1993).
    32. B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, Chem. Mater. 6, 1809 (1994).
    33. A. Dodabalapur, L. Torsi, H. E. Katz, Science. 1995, 268, 270 (1995).
    34. H. E. Katz, L. Torsi, A. Dodabalapur, Chem. Mater. 7, 2235 (1995).
    35. R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. constant, F. Garnier, Adv. Mater. 9, 557 (1997).
    36. R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, Adv. Mater. 9, 389 (1997).
    37. J. H. Sch^n, C. Kloc, B. Batlogg, Org. Electron. 1, 57 (2000).
    38. C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, J. Appl. Phys. 80, 2501 (1996).
    39. Y. –Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, 54th Annual Device Research Conference Digest 1996, p.80. 58, 1500 (1991).
    40. G. Horowitz, X. Peng, D. Fichou, F. Garnier, Synth. Met. 51, 419 (1992).
    41. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
    42. J. Kastner, J. Paloheimo, H. Kuzmany, in Solid State Sciences(Eds: H. Huzmany, M. Mehring, J. Fink), Springer., 515-521, (New York 1993) .
    43. G. Guillaud, M. Al Sadound, M. Maitrot, Chem. Phys. Lett. 167, 503(1990).
    44. Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
    45. H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 63, 1372 (1993).
    46. A. R. Brown, D. M. De Leeuw, E. J. Lous, E. E. Havinga, Synth. Met. 66, 257(1994).
    47. Yagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 84, 813 (2004)
    48. H. Klauk, G. Schmid, G. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nicols, and T. N. Jacson, Solid-State Electron. 47, 297 (2003).
    49. A. R. Brown, C. P. Jarrett, D.M. de Leeuw, M. Matters, Synthetic Metals. 88 37-55 (1997).
    50. G. Horowitz, J. Mater. Res., 19, 7 (2004).
    51. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, Chem. Mater.;16(23) 4436 (2004).
    52. Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Choa, Appl. Phys. Lett. 90 132104 (2007).
    53. C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, and S. Lee, Adv. Funct. Mater. 17, 958-962 (2007).
    54. J. Takeya , T. Nishikawa, T. Takenobu, S. Kobayashi, and Y. Iwasa T. Mitani, C. Goldmann, C. Krellner, and B. Batlogg, Appl. Phys. Lett. 85, 21, (2004).
    55. Y. Jang, Jeong H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho. Appl. Phys. Lett. 90, 132104, (2007).
    56. L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
    57. T. B. Singh, F. Meghdadi, S. Gunes, N. Marjanovic, Gilles Horowitz, P. Lang, S. Bauer, N. S. sariciftci, Adv. Mater. 17, 2315-2320 (2005).
    58. C. M. Hassan, N. A.Peppas, Advances in Polymer Science, 153.
    59. A. R. Brown, A. Pomp, C. M. Hart, D.M. Deleeuw, Science, 270, 972 (1995)
    60. K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, and B. Batlogg, J. Appl. Phys, 96, 11 (2004).
    61. S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, P. Heremans, Appl. Phys. Lett, 85, 4400 (2004)
    62. S. E. Fritz, T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B, 109, 10574 (2005).
    63. A. D. Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett., 86, 263501 (2005).
    64. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. 80, 2501 (1996).
    65. M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett., 81, 2 (2002).
    66. F. M. Heringdorf, M. C. Reuter and R. M. Tromp, Nature, 412, 517-520 (2001).
    67. M. S. Kim, H. T. Kim, S. S. Chi, T. E. Kim, H. T. Shin, K. W. Kang,H. S. Park, D. J. Kim, K. S. Min, D. W. Kang and D. M. Kim, Journal of the Korean Physical Society, 43, 5 (2003).

    下載圖示 校內:2011-07-23公開
    校外:2013-07-23公開
    QR CODE