| 研究生: |
黃秉弘 Huang, Ping-Hung |
|---|---|
| 論文名稱: |
烏溪高灘地水域棲地特性與魚類群落之關係 The Relationships between Habitat Characteristics and Fish Assemblages in Floodplain Waterbodies of the Wu River |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 高灘地水域 、棲地環境 、伏流水 、魚類群落 、巴氏銀鮈 |
| 外文關鍵詞: | Floodplain Waterbodies, Habitat Characteristics, Hyporheic Zone, Fish Assemblages, Squalidus banarescui |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
維持生物適合生存之棲地環境,需要進行完善的監測與評估,了解生物群落與棲地之間的關聯,有助於保護逐漸減少的生物群落。高灘地水域是許多生物生存和繁殖的重要棲地,其下方的伏流水區對許多河川和生物群落也非常重要,需要藉由調查與研究,探討高灘地水域的棲地特性與魚類群落結構,保護這些生物群落的生存。巴氏銀鮈(Squalidus banarescui)所棲息之環境沒有太多數據化的資訊,需要透過棲地特性調查,了解其相對適合生存之棲地特性。本研究於臺中市烏溪流域,選擇三處過去有觀察到巴氏銀鮈、未來有潛力存在和野放的高灘地水域進行調查,探討棲地特性與魚類群落之關係,評估巴氏銀鮈相對適合生存的棲地特性,提供後續棲地復育之參考。
本研究發現三處調查區域之棲地特性與魚類群落存在差異,可能與伏流水交換和各個魚種的棲地相對偏好有關。巴氏銀鮈與粗首馬口鱲(Opsariichthys pachycephalus)相對偏好水深較淺、導電度相對偏高的上湧區域環境;斯奈德小鲃(Puntius snyderi)相對偏好導電度偏低、pH值偏弱酸性以及能容忍低溶氧的環境;鯽(Carassius auratus auratus)相對偏好水深較深、溶氧偏高、導電度偏低的下滲區域環境;尼羅口孵非鯽(Oreochromis niloticus)對大部分的環境變量沒有顯著的相關性。巴氏銀鮈於這三處調查區域中比較常出現在底質屬於細顆粒,導電度相對偏高,溶氧相對偏低的上湧區域,因此烏溪高灘地水域之上湧區域是值得關注的地方。高灘地水域受到洪水事件或主流河道擺盪的動態影響,使魚類群落、棲地特性、演替軌跡以及生態系統產生變化,需要進行長期的監測,更加了解高灘地水域的棲地特性。
Maintaining a suitable habitat environment for instream organisms requires comprehensive monitoring and assessment to understand the relationship between fish assemblages and habitat characteristics. The floodplain waterbodies are important habitats for the survival of many organisms, and the hyporheic zone below them is also very important for many rivers and biomes. It is necessary to be aware of the habitat characteristics and fish assemblages in floodplain waterbodies and to protect these fish assemblages. Due to a lack of enough information on the preferred environments for Squalidus banarescui, it is necessary to investigate the habitat characteristics that are relatively suitable for its survival. In this study, we selected three floodplain waterbodies in the Wu River, including Habitat Restoration Zone, Mitten Crab Pool Zone, and Xiwei Bridge Zone. Through the investigation of habitat characteristics and fish assemblages, we explored the fish assemblages and the habitat preferences of each fish species in floodplain waterbodies of the Wu River, which could provide a reference for habitat restoration projects. We found that the habitat characteristics and fish assemblages in these three floodplain waterbodies were different, which could be attributed to the exchange of surface-hyporheic water and the habitat preferences of each fish species. Among the three floodplain waterbodies, Squalidus banarescui was frequently observed in the upwelling zones characterized by shallow water depth, fine-particle substrate, relatively high electrical conductivity, and relatively low dissolved oxygen. The floodplain waterbodies are dynamically affected by hydrological connectivity, main channel swings, and flood events, which cause the variety in fish assemblages, habitat characteristics, and succession trajectories. Therefore, long-term monitoring is required to protect the survival of these floodplain waterbodies organisms.
Akhtar, N., Syakir, M. I., Ahmad, M. I., Anees, M. T., Bin Abu Bakar, A. F., Mizan, S. A., et al. Upscaling of Surface Water and Groundwater Interactions in Hyporheic Zone from Local to Regional Scale. Water, 14(4), 23. (2022).
Akinwande, M. O., Dikko, H. G., & Samson, A. Variance inflation factor: as a condition for the inclusion of suppressor variable (s) in regression analysis. Open journal of statistics, 5(07), 754. (2015).
Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. Flow and storage in groundwater systems. science, 296(5575), 1985-1990. (2002).
Amal, M., & Zamri-Saad, M. Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika J. Trop. Agric. Sci, 34(2), 195-206. (2011).
Amoros, C., & Bornette, G. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater biology, 47(4), 761-776. (2002).
Anderson, M. P., & Woessner, W. W. The role of the postaudit in model validation. Advances in Water Resources, 15(3), 167-173. (1992).
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251-263. (2016).
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nature geoscience, 1(2), 95-100. (2008).
Baumgartner, A., & Liebscher, H.-J. Allgemeine hydrologie: Quantitative hydrologie. Allgemeine hydrologie: Borntraeger (1990).
Baxter, C., Hauer, F. R., & Woessner, W. W. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
Baxter, C. V., & Hauer, F. R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1470-1481. (2000).
Becker, A., Cowley, P. D., & Whitfield, A. K. Use of remote underwater video to record littoral habitat use by fish within a temporarily closed South African estuary. Journal of Experimental Marine Biology and Ecology, 391(1-2), 161-168. (2010).
Beechie, T. J., Sear, D. A., Olden, J. D., Pess, G. R., Buffington, J. M., Moir, H., et al. Process-based principles for restoring river ecosystems. BioScience, 60(3), 209-222. (2010).
Bencala, K. E. A perspective on stream-catchment connections. Journal of the North American Benthological Society, 12(1), 44-47. (1993).
Bilski, R. L., Wheaton, J. M., & Merz, J. E. Effects of In-Channel Structure on Chinook Salmon Spawning Habitat and Embryo Production. Water, 14(1), 21. (2022).
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603-679. (2014).
Bolland, J., Nunn, A., Lucas, M., & Cowx, I. The importance of variable lateral connectivity between artificial floodplain waterbodies and river channels. River Research and Applications, 28(8), 1189-1199. (2012).
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59-81. (1998).
Bovee, K. D., Milhous, R. T., & Turow, J. Hydraulic simulation in instream flow studies: theory and techniques: Department of the Interior, Fish and Wildlife Service, Office of Biological … (1978).
Brooks, E. J., Sloman, K. A., Sims, D. W., & Danylchuk, A. J. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endangered Species Research, 13(3), 231-243. (2011).
Broom, C. J., Weyl, O. L., & South, J. Habitat associations of imperilled fishes after conservation intervention in the Cape Fold Ecoregion, South Africa. Journal of Fish Biology. (2022).
Brunke, M., & Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37(1), 1-33. (1997).
Cappo, M., De’ath, G., & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Marine Ecology Progress Series, 350, 209-221. (2007).
Cardenas, M. B., Wilson, J., & Zlotnik, V. A. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8). (2004).
Castañeda, R. A., Weyl, O. L., & Mandrak, N. E. Using occupancy models to assess the effectiveness of underwater cameras to detect rare stream fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(3), 565-576. (2020).
Chen, I.-S., Jang-Liaw, N.-H., Chang, Y.-C., Zhang, V. W., & Shao, K.-T. Threatened fishes of the world: Squalidus banarescui Chen and Chang, 2007 (Cyprinidae). Environmental biology of fishes, 88(1), 63. (2010).
Coleman, R. L., & Dahm, C. N. Stream geomorphology: effects on periphyton standing crop and primary production. Journal of the North American Benthological Society, 9(4), 293-302. (1990).
Cornut, J., Elger, A., Lambrigot, D., Marmonier, P., & Chauvet, E. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biology, 55(12), 2541-2556. (2010).
Costa, M. R. d., Mattos, T. M., Borges, J. L., & Araújo, F. G. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil. Neotropical Ichthyology, 11, 871-880. (2013).
Dahm, C., Valett, H. M., Baxter, C., & Woessner, W. Hyporheic Zones. Methods in Stream Ecology. FR Hauer, GA Lamberti, 107-119. (2007).
Das, B. M., & Sivakugan, N. Introduction to geotechnical engineering: Cengage Learning (2015).
Datry, T., Lamouroux, N., Thivin, G., Descloux, S., & Baudoin, J. Estimation of sediment hydraulic conductivity in river reaches and its potential use to evaluate streambed clogging. River Research and Applications, 31(7), 880-891. (2015).
Datry, T., Larned, S. T., & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience, 64(3), 229-235. (2014).
Davy-Bowker, J., Sweeting, W., Wright, N., Clarke, R. T., & Arnott, S. The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia, 563(1), 109-123. (2006).
Dexter, E., Rollwagen‐Bollens, G., & Bollens, S. M. The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling. Limnology and Oceanography: Methods, 16(7), 434-443. (2018).
Dole-Olivier. The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Marine and Freshwater Research, 62(11), 1281-1302. (2011).
Dole-Olivier, M. J., Des Chatelliers, M. C., Galassi, D. M. P., Lafont, M., Mermillod-Blondin, F., Paran, F., et al. Drivers of functional diversity in the hyporheic zone of a large river. Science of the Total Environment, 843, 16. (2022).
Dole‐Olivier, & Marmonier, P. Patch distribution of interstitial communities: prevailing factors. Freshwater Biology, 27(2), 177-191. (1992).
Duff, J. H., & Triska, F. J. Denitrifications in sediments from the hyporheic zone adjacent to a small forested stream. Canadian Journal of Fisheries and Aquatic Sciences, 47(6), 1140-1147. (1990).
Ebner, B., & Morgan, D. Using remote underwater video to estimate freshwater fish species richness. Journal of Fish Biology, 82(5), 1592-1612. (2013).
Edwards, R. T. The hyporheic zone. River ecology and management: Lessons from the Pacific coastal ecoregion, 399-429. (1998).
Ellender, B. R., Becker, A., Weyl, O. L., & Swartz, E. R. Underwater video analysis as a non‐destructive alternative to electrofishing for sampling imperilled headwater stream fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(1), 58-65. (2012).
Favata, C. A., Maia, A., Pant, M., Nepal, V., & Colombo, R. E. Fish assemblage change following the structural restoration of a degraded stream. River Research and Applications, 34(8), 927-936. (2018).
Febria, C. M., Beddoes, P., Fulthorpe, R. R., & Williams, D. D. Bacterial community dynamics in the hyporheic zone of an intermittent stream. The ISME journal, 6(5), 1078-1088. (2012).
Findlay, S., Strayer, D., Goumbala, C., & Gould, K. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnology and oceanography, 38(7), 1493-1499. (1993).
Fischer, H., Kloep, F., Wilzcek, S., & Pusch, M. T. A river's liver–microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry, 76, 349-371. (2005).
Florentino, A. C., Petrere, M., Freitas, C. E. d. C., Toledo, J. J., Mateus, L., Súarez, Y. R., et al. Determinants of changes in fish diversity and composition in floodplain lakes in two basins in the Pantanal wetlands, Brazil. Environmental Biology of Fishes, 99, 265-274. (2016).
Fowler, R. T., & Scarsbrook, M. R. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel‐bed rivers. New Zealand Journal of Marine and Freshwater Research, 36(3), 471-482. (2002).
Fox, A., Boano, F., & Arnon, S. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune- shaped bed forms. Water Resources Research, 50(3), 1895-1907. (2014).
Franken, R. J., Storey, R. G., & Dudley Williams, D. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444, 183-195. (2001).
George, A. L., Kuhajda, B. R., Williams, J. D., Cantrell, M. A., Rakes, P. L., & Shute, J. Guidelines for propagation and translocation for freshwater fish conservation. Fisheries, 34(11), 529-545. (2009).
Glińska-Lewczuk, K., Burandt, P., Kujawa, R., Kobus, S., Obolewski, K., Dunalska, J., et al. Environmental factors structuring fish communities in floodplain lakes of the undisturbed system of the Biebrza River. Water, 8(4), 146. (2016).
Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., & Harvey, J. W. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10), 8572-8595. (2017).
Gooseff, M. N. Defining hyporheic zones–advancing our conceptual and operational definitions of where stream water and groundwater meet. Geography Compass, 4(8), 945-955. (2010).
Gordon, R., Lautz, L., & Daniluk, T. Hyporheic flow, solute transport, and heat flux in the stream bed around cross-vane restoration structures. Paper presented at the EGU General Assembly Conference Abstracts. (2010).
Gostner, W., Alp, M., Schleiss, A. J., & Robinson, C. T. The hydro-morphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects. Hydrobiologia, 712, 43-60. (2013).
Gostner, W., Annable, W., Schleiss, A., & Paternolli, M. A case-study evaluating river rehabilitation alternatives and habitat heterogeneity using the hydromorphological index of diversity. Journal of Ecohydraulics, 6(1), 1-16. (2021).
Grimm, N. B., Valett, H. M., Stanley, E. H., & Fischer, S. G. Contribution of the hyporheic zone to stability of an arid-land stream. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 24(3), 1595-1599. (1991).
Grimmel, H. M., Bullock, R. W., Dedman, S. L., Guttridge, T. L., & Bond, M. E. Assessment of faunal communities and habitat use within a shallow water system using non-invasive BRUVs methodology. Aquaculture and Fisheries, 5(5), 224-233. (2020).
Hancock, P. J. Human impacts on the stream–groundwater exchange zone. Environmental management, 29(6), 763-781. (2002).
Harvey, E., Cappo, M., Shortis, M., Robson, S., Buchanan, J., & Speare, P. The accuracy and precision of underwater measurements of length and maximum body depth of southern bluefin tuna (Thunnus maccoyii) with a stereo–video camera system. Fisheries Research, 63(3), 315-326. (2003).
Hendricks, S. P. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. Journal of the North American Benthological Society, 12(1), 70-78. (1993).
Hickey, M., & Closs, G. Evaluating the potential of night spotlighting as a method for assessing species composition and brown trout abundance: a comparison with electrofishing in small streams. Journal of Fish Biology, 69(5), 1513-1523. (2006).
Hill, A. R. Ground water flow paths in relation to nitrogen chemistry in the near-stream zone. Hydrobiologia, 206, 39-52. (1990).
Houde, A. L. S., Garner, S. R., & Neff, B. D. Restoring species through reintroductions: strategies for source population selection. Restoration Ecology, 23(6), 746-753. (2015).
Huang, J., Huang, L., Wu, Z., Mo, Y., Zou, Q., Wu, N., et al. Correlation of fish assemblages with habitat and environmental variables in a headwater stream section of Lijiang River, China. Sustainability, 11(4), 1135. (2019).
Hughes, F. M. R., Colston, A., & Mountford, J. O. Restoring riparian ecosystems: the challenge of accommodating variability and designing restoration trajectories. Ecology and society, 10(1). (2005).
Hynes, H. Groundwater and stream ecology. Hydrobiologia, 100, 93-99. (1983).
Jordan, F., Jelks, H. L., Bortone, S. A., & Dorazio, R. M. Comparison of visual survey and seining methods for estimating abundance of an endangered, benthic stream fish. Environmental Biology of Fishes, 81, 313-319. (2008).
Knighton, D. Fluvial forms and processes: a new perspective: Routledge (2014).
Kuhn, M., & Johnson, K. Applied predictive modeling (Vol. 26): Springer (2013).
Lamothe, K. A., & Drake, D. A. R. Moving repatriation efforts forward for imperilled Canadian freshwater fishes. Canadian Journal of Fisheries and Aquatic Sciences, 76(10), 1914-1921. (2019).
Leclezio, L., Jansen, A., Whittemore, V. H., & de Vries, P. J. Pilot validation of the tuberous sclerosis-associated neuropsychiatric disorders (TAND) checklist. Pediatric Neurology, 52(1), 16-24. (2015).
Lefebvre, S., Marmonier, P., Pinay, G., Bour, O., Aquilina, L., & Baudry, J. Nutrient dynamics in interstitial habitats of low-order rural streams with different bedrock geology. Archiv fur Hydrobiologie, 164(2), 169-191. (2005).
Legendre, P., & Legendre, L. Numerical ecology: Elsevier (2012).
Lepš, J., & Šmilauer, P. Multivariate analysis of ecological data using CANOCO: Cambridge university press (2003).
Lewandowski, J., Arnon, S., Banks, E., Batelaan, O., Betterle, A., Broecker, T., et al. Is the Hyporheic Zone Relevant beyond the Scientific Community? Water, 11(11), 32. (2019).
Li, J., Huang, L., Zou, L., Kano, Y., Sato, T., & Yahara, T. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environmental Biology of Fishes, 93, 403-417. (2012).
Lintern, A., Webb, J. A., Ryu, D., Liu, S., Bende-Michl, U., Waters, D., et al. Key factors influencing differences in stream water quality across space. Wiley Interdisciplinary Reviews-Water, 5(1), 31. (2018).
Maazouzi, C., Galassi, D., Claret, C., Cellot, B., Fiers, F., Martin, D., et al. Do benthic invertebrates use hyporheic refuges during streambed drying? A manipulative field experiment in nested hyporheic flowpaths. Ecohydrology, 10(6), e1865. (2017).
Magliozzi, C., Grabowski, R. C., Packman, A. I., & Krause, S. Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrology and Earth System Sciences, 22(12), 6163-6185. (2018).
Magoulick, D. D., Dekar, M. P., Hodges, S. W., Scott, M. K., Rabalais, M. R., & Bare, C. M. Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought. Scientific Reports, 11(1), 1-15. (2021).
Malcolm, I., Soulsby, C., Youngson, A., Hannah, D., McLaren, I., & Thorne, A. Hydrological influences on hyporheic water quality: implications for salmon egg survival. Hydrological Processes, 18(9), 1543-1560. (2004).
Marmonier, P., Olivier, M.-J., Des Châtelliers, M. C., Paran, F., Graillot, D., Winiarski, T., et al. Does spatial heterogeneity of hyporheic fauna vary similarly with natural and artificial changes in braided river width? Science of the Total Environment, 689, 57-69. (2019).
Mathers, K. L., Hill, M. J., & Wood, P. J. Benthic and hyporheic macroinvertebrate distribution within the heads and tails of riffles during baseflow conditions. Hydrobiologia, 794, 17-30. (2017).
Matthe, G., & Ubell, K. Allgemeine Hydrogeologie, Grundwasserhaushalt, Gebr. Borntraeger, Berlin. (1983).
Mermillod-Blondin, F., & Rosenberg, R. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic sciences, 68, 434-442. (2006).
Miller, S. W., Budy, P., & Schmidt, J. C. Quantifying macroinvertebrate responses to in‐stream habitat restoration: applications of meta‐analysis to river restoration. Restoration Ecology, 18(1), 8-19. (2010).
Mitton, A., & Allen, D. Aquifer-Stream Exchanges and the Importance of Groundwater Discharge for Maintaining Instream Habitat and Benthic Macroinvertebrates. Frontiers in Earth Science, 277. (2022).
Moyle, P. B. The decline of anadromous fishes in California. Conservation Biology, 8(3), 869-870. (1994).
Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184), 202-205. (2008).
Murphy, H. M., & Jenkins, G. P. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Marine and Freshwater Research, 61(2), 236-252. (2010).
Navel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L., & Marmonier, P. Water–sediment exchanges control microbial processes associated with leaf litter degradation in the hyporheic zone: a microcosm study. Microbial ecology, 61, 968-979. (2011).
Nelson, A. R., Sawyer, A. H., Gabor, R. S., Saup, C. M., Bryant, S. R., Harris, K. D., et al. Heterogeneity in hyporheic flow, pore water chemistry, and microbial community composition in an alpine streambed. Journal of Geophysical Research: Biogeosciences, 124(11), 3465-3478. (2019).
Orghidan, T. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol, 55(3), 392-414. (1959).
Pacioglu, O. Ecology of the hyporheic zone: a review. Cave Karst Sci, 36, 69-76. (2010).
Penczak, T., Galicka, W., Głowacki, Ł., Koszaliński, H., Kruk, A., Zięba, G., et al. Fish assemblage changes relative to environmental factors and time in the Warta River, Poland, and its oxbow lakes. Journal of Fish Biology, 64(2), 483-501. (2004).
Peralta-Maraver, I., Reiss, J., & Robertson, A. L. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Science of the Total Environment, 610, 267-275. (2018).
Petts, G., & Amoros, C. Fluvial hydrosystems: Springer Science & Business Media (1996).
Platts, W. S., Megahan, W. F., & Minshall, G. W. Methods for evaluating stream, riparian, and biotic conditions (Vol. 138): US Department of Agriculture, Forest Service, Intermountain Forest and Range … (1982).
Poole, G. C. Stream hydrogeomorphology as a physical science basis for advances in stream ecology. Journal of the North American Benthological Society, 29(1), 12-25. (2010).
Razali, N. M., & Wah, Y. B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), 21-33. (2011).
Robertson, A., & Wood, P. Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundamental and Applied Limnology, 176(4), 279-289. (2010).
Schofield, P. J., Brown, M. E., & Fuller, P. L. Salinity tolerance of goldfish Carassius auratus L., a non-native fish in the United States. Florida Scientist, 258-268. (2006).
Schomaker, C., & Wolter, C. The contribution of long‐term isolated water bodies to floodplain fish diversity. Freshwater Biology, 56(8), 1469-1480. (2011).
Schwartz, J. S., & Herricks, E. E. Fish use of stage-specific fluvial habitats as refuge patches during a flood in a low-gradient Illinois stream. Canadian Journal of Fisheries and Aquatic Sciences, 62(7), 1540-1552. (2005).
Sliva, L., & Dudley Williams, D. Responses of hyporheic meiofauna to habitat manipulation. Hydrobiologia, 548, 217-232. (2005).
Statzner, B., Gore, J. A., & Resh, V. H. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American benthological society, 7(4), 307-360. (1988).
Storey, R. G., Williams, D. D., & Fulthorpe, R. R. Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry, 69(3), 285-313. (2004).
Stubbington, R. The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Marine and Freshwater Research, 63(4), 293-311. (2012).
Thukral, A. K. A review on measurement of Alpha diversity in biology. Agric. Res. J, 54(1), 1-10. (2017).
Valett, H. M., Fisher, S. G., Grimm, N. B., & Camill, P. Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology, 75(2), 548-560. (1994).
Valett, H. M., Fisher, S. G., & Stanley, E. H. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. Journal of the North American Benthological Society, 9(3), 201-215. (1990).
Valett, H. M., Hakenkamp, C. C., & Boulton, A. J. Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. Journal of the North American Benthological Society, 12(1), 40-43. (1993).
Ward, A. S. The evolution and state of interdisciplinary hyporheic research. Wiley Interdisciplinary Reviews-Water, 3(1), 83-103. (2016).
Watson, D. L., Anderson, M. J., Kendrick, G. A., Nardi, K., & Harvey, E. S. Effects of protection from fishing on the lengths of targeted and non-targeted fish species at the Houtman Abrolhos Islands, Western Australia. Marine Ecology Progress Series, 384, 241-249. (2009).
White, D. S. Biological relationships to convective flow patterns within stream beds. Hydrobiologia, 196(2), 149-158. (1990).
White, D. S. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61-69. (1993).
Williams, & Hynes, H. The occurrence of benthos deep in the substratum of a stream. (1974).
Wood, P., Boulton, A., Little, S., & Stubbington, R. Is the hyporheic zone a refugium for macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology/Archiv für Hydrobiologie, 176(4), 377-390. (2010).
Wyatt, K. H., Hauer, F. R., & Pessoney, G. F. Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia, 607, 151-161. (2008).
Yap, B. W., & Sim, C. H. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141-2155. (2011).
Zeglin, L. H. Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Frontiers in microbiology, 6, 454. (2015).
尤仁弘. 緊急抗旱伏流水開發與利用. 水資源管理會刊, 23(1). (2021).
行政院農業委員會林務局. 110年度烏溪水系巴氏銀鮈分布監測計畫期末報告. (2022).
呂映昇. 物理環境因子與魚類棲地喜好度之關係-多變量分析之應用. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/7mbb26 (2009).
周銘泰、高瑞卿. 台灣淡水及河口魚圖鑑 (Vol. 18): 晨星出版 (2011).
邵廣昭. 臺灣魚類資料庫 網路電子版. from http://fishdb.sinica.edu.tw (2023).
孫建平. 巴氏銀鮈分布與棲地水文特性調查. 行政院農業委員會林務局、國立成功大學. (2022).
游志弘. 地表逕流與伏流水交換對水質特性相關性之探討. 國立成功大學水利及海洋工程學系碩士論文, 台南市。取自 https://hdl.handle.net/11296/jgn67t (2014).
游志弘、孫建平. 河道伏流水特性及其對地表逕流水質之影響. 農業工程學報, 61(2), 47-60. (2015).
黃家富、劉富光. 台灣淡水魚類養殖(下) (Vol. 13): 行政院農業委員會水產試驗所 (2011).
楊正雄、林文隆. 2023年巴氏銀鮈保育行動計畫. 行政院農業委員會林務局、行政院農業委員會特有生物研究保育中心. 臺灣. (2023).
楊正雄、曾子榮、林瑞興、曾晴賢、廖德裕. 2017 臺灣淡水魚類紅皮書名錄. 行政院農業委員會特有生物研究保育中心. 南投. (2017).
經濟部水利署第三河川局. 烏溪水系河川情勢調查計畫(1/3). (2020).