| 研究生: |
傅禮斌 Fu, Li-Ping |
|---|---|
| 論文名稱: |
水-油複合液滴的燃燒特性分析 Burning of a Stream of Water-in-Oil Compound Drops |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 液滴燃燒 、液滴蒸發 、複合液滴 |
| 外文關鍵詞: | Drop combustion, Drop evaporation, Compound drop |
| 相關次數: | 點閱:55 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究經由震盪方式,產製出柴油、十二烷單質液滴與水-十二烷單核複合液滴,以自由飛行的方式,進入熱環境中,藉以研究單質液滴與複合液滴受熱燃燒現象。本研究設計建立一套直立的燃燒系統,藉由甲烷、氧氣與空氣的預混火焰,形成一個穩定的平面火焰,作為高溫熱環境的熱源,以進行實驗研究。
研究中發現,單質液滴的蒸發率會隨著高溫環境中含氧量的增加而增大,複合液滴的蒸發率則不會隨著含氧量的增加而改變。複合液滴因為內核水的影響,其蒸發率小於單質液滴,但複合液滴內水量的增減影響蒸發率並不明顯。燃燒特性的研究中,在單質液滴部分,火焰長度會隨著環境中含氧量的增加而增長;在複合液滴部分,火焰因為外層油膜蒸發完畢,無法持續地提供燃料蒸氣而熄滅。油膜蒸發完畢,水滴暴露在高溫環境後,研究觀察發現蒸發率有增加的趨勢。
In this research, a single-phase drop stream (diesel, dodecane) and a water-in-dodecane compound drop stream were produced by utilizing of a piezoelectric drop generator. These drop streams entered a high temperature environment and burned as freely falling drops. For the purpose of providing a heat source of high temperature environment, a vertical combustion chamber was built, which was maintained by a steady flat premixed flame. The behavior of drop stream and the combustion phenomenon of single-phase and compound drop streams were observed.
In the research, the evaporation rate of a single-phase drop would increases with the oxygen content in the high temperature environment. However, the evaporation rate of a compound drop would not change with the oxygen content. The evaporation rate of compound drop was smaller than that of a single-phase drop because of the water core influence. But the varying of the quantity of water inside the compound drop would not influence the evaporation. In the combustion characteristic research of the single-phase drop, the flame length would increase with the increasing oxygen content. For the compound drop, the flame would go out because the outer layer oil film was consumed by evaporation and no fuel vapor was available. After the oil film was exhausted and the water drop was exposed to the high temperature environment, the evaporation rate showed an increasing trend.
1.Wang, C. H., Liu, X. Q. and Law, C. K., “Combustion and microexplosion of freely falling multicomponent droplets,” Combustion and Flame, Vol. 56, No. 2, p. 175, 1984.
2.Dryer, F. L., “Water addition to practical combustion system-concepts and applications,” Proceedings of the 16th symposium (International) on combustion, The combustion institute, p. 279, 1977.
3.Hertz, H. and Hermanrud, B., “A liquid compound jet,” J. Fluids Mech., Vol. 131, p. 271, 1983.
4.Sakai, T., Sadakata, M., Sato, M. and Kimura, K., “Production of uniformly sized dual concentric droplets form coaxial smooth jet under applied ac electric field,” Atomization and sprays, Vol. 1, No. 2, p. 171, 1991.
5.Lin, S. Y., Chiu, S. L., Chen, R. H., Pu, J. Y. and Lin, T. H., “Formation of gas-in-liquid compound drop,” ICLASS 2006, Kyoto, Japan, 2006.
6.邱聖麟,“水-油複合液滴撞擊熱板的研究”,國立成功大學機械工程學系,博士論文,民國九十六年。
7.陳正文,“複合液滴的受熱行為與微爆現象”,國立成功大學機械工程學系,碩士論文,民國九十四年。
8.林大惠,鄧熙聖,朱信,翁鴻山,“利用複合液滴噴柱技術於燃燒系統進行二氧化碳之現址捕獲與轉化(2/3)”,國科會專題研究期中精簡報告,NSC94-2218-E-006-019,2007。
9.Kuo, K. K., “Principle of combustion,” John Willy and Sons, New York, p. 370, 1985.
10.Miyasaka, K. and Law, C. K., “Combustion of strongly-interacting linear droplet,” 18th Symposium (International) on Combustion, p. 283, 1981.
11.Umemura A., Ogawa, S. and Oshima, N., “Analysis of the interaction between two burning droplet,” Combustion and Flame, Vol. 41, p. 45, 1981.
12.Tsue, M., Kadota, T., Segawa, D. and Yamasaki, H., “Statistical analysis on onset of microexplosion for an emulsion droplet,” 26th symposium (International) on combustion, The combustion institute, p. 1629, 1996.
13.Segwa, D., Yamasaki, H., Kadota, T., Tanaka, H., Enomoto, H. and Tsue, M., “Water-coalescence in an oil-in-water emulsion droplet burning under microgravity,” Proceeding of the combustion institute, Vol. 28, p. 985, 2000.
14.Yozgatligil, A., Park, S., Chol, M. Y., Kazakov, A. and Dryer, F. L., “Burning and sooting behavior of ethanol droplet combustion under microgravity conditions,” Combust. Sci. and Tech., Vol. 176, p. 1985, 2004.
15.Frohn, A. and Roth, N., “Dynamics of droplet,” Springer, New York, 2000.
16.Basaran, O. A., “Small-scale free surface flows with breakup: drop formation and emerging application,” AIChE Journal, Vol. 48, No. 9, p. 1842, 2002.
17.Sazhin, S. S., Abdelghaffar, W. A., Sazhina, E. M. and Heikal, M. R., “Models for droplet transient heating: effects on droplet evaporation, ignition, and break-up,” International Journal of Thermal Sciences, Vol. 44, p. 610, 2005.
18.Shaw, B. D., Dwyer, H. A. and Wei, J. B., “Studies on combustion of single and double streams of methanol and methanol/dodecanol droplet,” Combust. Sci. and Tech., Vol. 174, p. 29, 2002.
19.Stry, W. J., Felske, J. D. and Ashgriz, N., “Droplet combustion of chlorinated benzenes, alkanes, and their mixtures in dry atmosphere,” Environmental Engineering Science, Vol. 20, p. 125, 2003.
20.Wang, C. H., Hung, W. G., Fu, S. Y., Huang, W. C. and Law, C. K. “On the burning and microexplosion of collision-generated two- compound droplets: miscible fuels,” Combustion and Flame, Vol. 134, p. 289, 2003.
21.Shaw, B. D., Wei, J. B. and Dwyer, H. A., “Influence of a cooled wall on droplet stream combustion,” Combust. Sci. and Tech., Vol. 176, p. 215, 2004.
22.Goedde, E. F. and Yuen, M. C., “Experiments on liquid jet instability,” J. Fluids Mech., Vol. 40, p. 495, 1970.
23.Vassallo, P. and Ashgriz, N., “Satellite formation and merging in liquid jet,” Proc. R. Soc. London, Ser. A, Vol. 433, p. 269, 1991.
24.Rayleigh, L., “On the capillary phenomena for jet,” Proc. R. Soc. London, Vol. 29, p. 71, 1879.