簡易檢索 / 詳目顯示

研究生: 江仲庭
Chiang, Chung-Ting
論文名稱: 空氣動力噴嘴用於熔噴纖維製程之研究
Investigation of Production of Meltblown Fibers by the Aerodynamic Nozzle
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 高分子纖維熔噴動力拉伸紡紗纖維空氣動力噴嘴
外文關鍵詞: polymer fibers, meltblown, dynamic drafting, spinning fibers, aerodynamic nozzle
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討高分子熔噴纖維在空氣動力牽伸下之紡紗生產製程,傳統紡絲之生產以微細孔噴嘴在高壓下擠壓抽絲為主,但細孔之機械加工有其極限,通常要在金屬或陶瓷材質上鑽50微米以下的細孔,有其實質上的困難。近年來雷射加工技術雖然可以將微孔尺度進一步往下探,但是其加工深度亦受光學極限之限制,尤其噴嘴孔徑越小,在生產過程越容易產生障礙,故要生產超微細的紡紗纖維,必須另尋對策。本研究所採用的技術是讓高分子纖維材料在熔融狀態下,以高速氣流進行牽引拉伸,產生超微細之紡絲。研究項目包括設計具加熱進料裝置之雙級式空氣動力噴嘴裝置,建構高分子熱熔裝置,高壓空氣供應及控制系統,細紡絲收集裝置。本研究生產控制參數分別為進料壓力(Pgas)、進氣壓力(Pfib)、聚丙烯加熱溫度和纖維收集高度。研究結果顯示,在纖維收集高度50 cm、聚丙烯加熱溫度為1800C、進氣壓力(Pgas)為6 bar的條件之下、進料壓力(Pfib)為分別為2 、3及4 bar,所產生的纖維平均直徑分別為1.20 μm、1.39 μm、2.89 μm;同時當氣源壓力在3 bar時,若進料壓力(Pfib)從1 bar增加到4 bar,纖維產率從1.6 g/min增加至14.2 g/min,在固定氣源壓力時,當進料壓力越大,纖維絲產量也越高。聚丙烯加熱溫度1800C、進氣壓力(Pgas)為5 bar、進料壓力(Pfib)為2 bar,纖維收集位子分別為噴嘴下游20、30及50 cm處,可以將原來線徑1500 μm的熔融高分子材料,在高速氣流下拉伸成線徑分別為2.28 μm、1.95 μm、1.62 μm的微細纖維,顯示在噴嘴更下游處可以將熔融高分子材料拉伸成更細微的纖維絲。若進氣壓力(Pgas)為4 bar、進料壓力(Pfib)為2 bar,聚丙烯加熱溫度分別為1850C及1900C時,在噴嘴下游50 cm處,可以將熔融高分子材料拉伸成平均直徑分別為3.50 μm及2.50 μm之細微纖維絲。顯示本研究所發展之空氣動力熔噴製程可以量產超微細之纖維絲,適合產業上應用。

    This study investigates the spinning process of the polymer meltblown fibers drafted by the aerodynamic. The convention production of fine spinning extruded by the micropores nozzle spinning at high pressure, but fine machining of microns has its limit. It has substantial difficulty to drill pores of 50 microns on metal or ceramic materials. However, in recent years, although laser processing technology can be used on micro-scale, it is also restricted to the optical utmost of the depth of process. Especially the smaller nozzle diameter the more disorders prone to be produced in the production process. Therefore, it has to find countermeasures to produce ultra-fine spinning fibers. This study adopts the melt-blowing is a nonwoven web forming process that extrudes and draws molten polymer resins with heated, high velocity air to form fine filaments. Research projects include the design of a dual-stage aerodynamic nozzle with heating as feeding device, construction of polymer melt equipment, high-pressure air supply and control systems, and the fine spinning collecting devices. In this study, control parameters are feed pressure (Pfib), inlet pressure (Pgas), polypropylene heating temperature and fibers collected height.
    The results show that the fibers collected height is 50 cm, the polypropylene heating temperature is 1800C, the inlet pressure (Pgas) is at 6 bar, feed pressure (Pfib) is at 2 ,3 and 4 bar, the mean diameters of collected fibers are 1.20 μm、1.39 μm、and 2.89 μm. When the inlet pressure (Pgas) is 3 bar, the feed pressure is (Pfib) from 1 bar to 4 bar, and the fiber yield increases from 1.6 g/min to 14.2 g/min. The inlet pressure is fixed, the higher the feed pressure, the more the yield of the fiber. Polypropylene heating temperature is 1800C, the inlet pressure (Pgas) is at 5 bar, and the feed pressure (Pfib) is at 2 bar, the fibers collected height are 20, 30 and 50 cm. The original die diameter are 1500 μm of molten polymer materials can be stretched to a diameter of 2.28 μm, 1.95 μm and 1.62 μm microfibers with high speed airflow. It can be stretched into finer fiber on downstream of the nozzle. If the inlet pressure (Pgas) is at 4 bar, the feed pressure (Pfib) is at 2 bar, and the polypropylene heating temperature are 1850C and 1900C, the fibers collected height is 50 cm, molten polymer material can be stretched into a mean diameter of 3.50 μm and 2.50 μm of fine fibers. In this study, it shows that the aerodynamic meltblown process can produce ultra-fine fibers for industrial applications.

    目錄 I 表目錄 III 圖目錄 IV 符號說明 IV 第一章 緒論 1 1.1 背景簡介 1 1.2 人造纖維之製成方法相關研究 2 1.2.1 靜電紡絲 2 1.2.2 熔融紡絲 3 1.2.3 熔噴 4 1.3 熔噴纖維製程相關研究 5 1.4 研究動機與目的 11 第二章 實驗儀器設備與方法 12 2.1 噴嘴設計概念 12 2.2 實驗設備 14 2.2.1 進氣系統 15 2.2.2 加熱系統 15 2.2.3 量測系統 17 2.3 實驗步驟與方法 18 2.4 實驗控制條件與數據量測 20 2.4.1 實驗控制條件 20 第三章 實驗結果與討論 25 3.1 進料壓力(Pfib)對纖維產量的影響 25 3.2 進氣壓力(Pgas)以及進料壓力(Pfib)對纖維平均直徑的影響 29 3.2.1 進氣壓力(Pgas) 對纖維平均直徑的影響 29 3.2.2 進料壓力(Pfib) 對纖維平均直徑的影響 41 3.3 纖維的收集高度對於平均直徑的影響 55 3.4 加熱溫度條件對纖維平均直徑的影響 74 第四章 結論 85 參考文獻 87

    [1]Y Yeo, D Jeon, C Kim, S Choi, K Cho, Y Lee, et al, J Biomed Mater Res
    ,72B:86–93, 2005
    [2]K Lee, S Givens, DB Chase, JF Rabolt, Polymer, 47:8013–8, 2006
    [3]X Zong, K Kim, D Fang, S Ran, BS Hsiao, B Chu, Polymer, 43:4403–12, 2002
    [4]J Meng, L Song, H Kong, G Zhu, C Wang, J Biomed Mater Res, 79A:298–306, 2006
    [5]Y You, BM Min, SJ Lee, TS Lee, J Appl Polym Sci, 95:193–200, 2005
    [6]BS Kim, DJ Mooney, J Biomed Mater Res, 41:322–32, 1998
    [7]SP Higgins, AK Solan, LE Niklason, J Biomed Mater , 67A:295–302, 2003.
    [8]G Jinming, L Niklason, R Langer, J Biomed Mater Res, 42:417–24, 1998
    [9]DB Eugene, AT Todd, GS David, EW Gary, LB Gary, J Biomed Mater Res, 71B:144–52, 2004
    [10]D. Li, Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?,” Advanced Materials 16 (14): 1151, July, 2004
    [11]S.J. Russell, Handbook of Nonwovens, 1st ed., CRC Press, Woodhead Publications,Boca Raton, FL, Cambridge, 2007
    [12]John C. Slattery*, Sangheon Lee,” Analysis of melt spinning,” J. Non-Newtonian Fluid Mech, 89 273-286,1999
    [13]Edmir Silva, “The Meltblowing Process,” NONWOVENS, TT 505.601,2010
    [14]Dawud H. Tan, Chunfeng Zhou, Christopher J. Ellison 1, Satish Kumar,Christopher W. Macosko∗, Frank S. Bates∗∗,” Meltblown fibers: Influence of viscosity and elasticity on diameter distribution,” Journal of Non-Newtonian Fluid Mechanics, 2010
    [15]Christopher J. Ellison1, Alhad Phatak1, David W. Giles, Christopher W. Macosko, Frank S. Bates*,” Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup,” Polymer 48 (2007) 3306-3316, April 2007
    [16]T Funada, DD Joseph, J Non-Newtonian Fluid Mech, 111(2-3): 87-105, 2003
    [17]DD Joseph, GS Beavers, T Funada, J Fluid Mech, 453:109-32, 2002
    [18]DW Bousfield, R Keunings, G Marrucci, MM Denn, J Non-Newtonian Fluid Mech, 21(1):79-97, 1986
    [19]C HC hang, EA Demekhin, K E alaidin, Phys Fluids, 11(7):1717-37, 1999
    [20]楊光,”Nanoval技術的新進展,”MELLIAND CHINA, 34(4), 2006.
    [21]Xupin Zhuanga,b, Xiaocan Yanga, Lei Shia, Bowen Chengb,∗, Ketian Guana, Weimin Kanga,b,” Solution blowing of submicron-scale cellulose fibers.” Carbohydrate Polymers 90 982– 987,2012
    [22]Youngchul Lee*, Larry C. Wadsworth, ” Effects of melt-blowing process conditions on morphological and mechanical properties of polypropylene webs,” POLYMER, Volume 33, Number 6 1209, 1992.
    [23]王覺寬,陳軍佑,黃揚升,邱俊賢,”多級式超音速噴嘴裝置,”中華民國發明專利,案號:99106074,99年2月15日
    [24]王覺寬,林天柱,賴等叁,2005,“內混式二段霧化裝置 ”中華民國發明專利證書第I 233839號,專利權期間2005.6.11~2023.4.13

    無法下載圖示 校內:2018-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE