簡易檢索 / 詳目顯示

研究生: 吳采晏
Wu, Tsai-Yen
論文名稱: 鎳金屬有機骨架之生長與磷化以作為超級電容器之電極
Growth and Phosphorization of Ni-MOF as Supercapacitor Electrodes
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 103
中文關鍵詞: 金屬有機骨架磷化鎳超級電容器
外文關鍵詞: metal-organic frameworks, nickel phosphide, supercapacitor
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由金屬有機骨架在發泡鎳上的成長與磷化以製備磷化鎳作為超級電容器之電極。首先,藉由發泡鎳的水熱處理在發泡鎳表面形成三維氫氧化鎳奈米薄片。然後,將其浸於含有鹽酸與均苯三甲酸(H3BTC)且溫度提高的溶液中,透過H3BTC與在鹽酸輔助下自氫氧化鎳釋出之鎳離子的反應,在發泡鎳表面可生長出類似花狀的金屬有機骨架Ni3(BTC)2。發現發泡鎳表面所得之[Ni3(BTC)2]@Ni(OH)2較Ni(OH)2有較高的比電容。其次,在管型爐中,以次磷酸鈉作為磷的來源,將發泡鎳表面的[Ni3(BTC)2]@Ni(OH)2磷化,形成磷化鎳(NixP)。結果顯示,磷化後電容可再進一步提升。在2M KOH電解液中,所得磷化鎳在電流密度2.5 A g-1下之比電容值為1689 F g-1。分別以磷化鎳、活性碳、與聚乙烯醇-氫氧化鉀凝膠作為正極、負極、與電解質,組成全固態非對稱型超級電容器。在電流密度1.5 A g-1下,展現101.1 F g-1的高比電容值,其能量密度與功率密度分別可達20.22 Wh kg-1與達3073 W kg-1,且經過10000次循環後,仍保有83%的電容值,顯示其良好的穩定性。此外,經充電後,它可點亮LED燈,證明其實際應用之可行性。

    This thesis concerns the fabrication of the nickel phosphide as the supercapacitor electrode via the growth and phosphorization of metal organic frameworks (MOFs) on the nickel foam. Firstly, 3-dimensional nickel hydroxide (Ni(OH)2) nanosheets was formed on the surface of nickel foam via the hydrothermal treatment of nickel foam. Then, by immersing into the solution of hydrochloric acid and trimesic acid (H3BTC) at an elevated temperature, the flower-like MOFs [Ni3(BTC)2] could grow on the nickel foam via the reaction between H3BTC and the nickel ions released from nickel hydroxide under the assistance of hydrochloric acid. It was found that the resulting [Ni3(BTC)2]@Ni(OH)2 on the nickel foam exhibited larger specific capacitance than Ni(OH)2. Secondly, the [Ni3(BTC)2]@Ni(OH)2 on the nickel foam was phosphorized to form the nickel phosphide (NixP) in a tube furnace using sodium hypophosphite monohydrate as the phosphorous source. It was shown that the capacitance could be further raised after phosphorization. In 2M KOH, the resulting nickel phosphide on the nickel foam exhibited a specific capacitance of 1689 F g-1 at the current density of 2.5 A g-1. Finally, the all-solid-state asymmetric supercapacitor was fabricated with nickel phosphide, active carbon, and polyvinyl alcohol-potassium hydroxide (PVA-KOH) gel as the positive electrode, negative electrode, and electrolyte, respectively. It exhibited a high specific capacitance of 101.1 F g-1 at the current density of 1.5 A g-1. Its energy density and power density were up to 20.22 Wh kg-1 and 3073 W kg-1, respectively. Also, 83% of capacitance could be retained after 10000 cycles, revealing its good stability. In addition, after charging, it could successfully turn on the light-emitting diode (LED) light, demonstrating its feasibility in practical application.

    中文摘要 II Abstract III 致謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 金屬有機骨架 1 1.1.1金屬有機骨架簡介 1 1.1.2金屬有機骨架製備 4 1.1.3金屬有機骨架之後處理 6 1.1.4金屬有機骨架之應用 13 1.2 超級電容器 16 1.2.1超級電容器之簡介 16 1.2.2超級電容器之分類 18 1.2.3超級電容器之電極材料發展 21 1.2.4 磷化鎳於超級電容器之應用 25 1.3研究動機 26 第二章 基礎理論 27 2.1 水熱合成法 27 2.2 循環伏安法理論 31 2.3 定電流充放電原理 33 2.4 電化學交流阻抗原理 34 第三章 實驗 40 3.1 實驗藥品與儀器 40 3.1.1 藥品 40 3.1.2 儀器 42 3.2 實驗步驟 44 3.2.1 Ni(OH)2之製備 44 3.2.2 [Ni3(BTC)2]@Ni(OH)2之製備 46 3.2.3 NixP/Ni(OH)2之製備 47 3.2.4 活性碳電極之製備 48 3.2.5 膠態電解質之製備 50 3.2.6 全固態超級電容器之製備 52 3.3 性質測定與分析 53 3.4 電化學測試 55 3.4.1. NixP/Ni(OH)2之電化學測試 55 3.4.2. 全固態NixP/Ni(OH)2之電化學測試 56 第四章 結果與討論 57 4.1 [Ni3(BTC)2]@Ni(OH)2電極材料之鑑定與電容特性 57 4.1.1[Ni3(BTC)2]@Ni(OH)2電極材料之鑑定 57 4.1.2[Ni3(BTC)2]@Ni(OH)2電極材料之電容特性 69 4.2 NixP/Ni(OH)2電極材料之鑑定與電容特性 72 4.2.1 NixP/Ni(OH)2電極材料之鑑定 72 4.2.2 NixP/Ni(OH)2電極材料之電容特性 79 4.3 NixP/Ni(OH)2//AC全固態超級電容器之電容特性 92 第五章 結論 96 參考文獻 97

    [1] H. Furukawa, K. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 2013.
    [2] O. Yaghi and H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society, 117, 10401−10402, 1995
    [3] P. Moghadam,, A. Li, S. Wiggin, A. Tao, A. Maloney, P. Wood, S. Ward and D. Jimenez, Development of a cambridge structural database subset: a collection of metal−organic frameworks for past, present, and future, Chemistry of Materials, 29, 2618−2625, 2017.
    [4] Z. Xie, W. Xu, X. Cui, and Y. Wang, Recent progress in metal–organic frameworks and their derived nanostructures for energy and environmental applications, ChemSusChem, 10, 1645 – 1663, 2017.
    [5] J. Kim, S. Lee, J. Kim, and D. Lee, Metal–organic frameworks derived from zero-valent metal substrates: mechanisms of formation and modulation of properties, Advanced Functional Materials, 29, 1808466, 2019.
    [6] K. Okada , R. Ricco , Y. Tokudome , M. Styles , A. Hill , M. Takahashi and P. Falcaro, Copper conversion into Cu(OH)2 nanotubes for positioning Cu3(BTC)2 MOF crystals: controlling the growth on flat plates, 3D architectures, and as patterns, Advanced Functional Materials, 24, 1969–1977, 2014.
    [7] J. Reboul, S. Furukawa, N. Horike, M. Tsotsalas, K. Hirai, H. Uehara, M. Kondo, N. Louvain, O. Sakata and S. Kitagawa, Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication, Nature Materials, 11, 717–723, 2012.
    [8] X. Xie, K. Huang and X. Wu, Metal–organic framework derived hollow materials for electrochemical energy storage, Journal of Materials Chemistry A, 6, 6754, 2018.
    [9] R. Salunkhe, Y. Kaneti, and Y. Yamauchi, Metal−organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects, ACS Nano, 11, 5293−5308, 2017.
    [10] W. Xia, A. Mahmood, R. Zou and Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environmental Science, 8, 1837−1866, 2015.
    [11] D. Yuan, J. Chen, S. Tan, N. Xia and Y. Liu, Worm-like mesoporous carbon synthesized from metal–organic coordination polymers for supercapacitors, Electrochemistry Communications, 11, 1191–1194, 2009.
    [12] B. Liu, H. Shioyama, T. Akita and Q. Xu, Metal-Organic Framework as a Template for Porous Carbon Synthesis, Journal of the American Chemical Society, 130, 5390–5391, 2008.
    [13] D. Liu, J. Wan, G. Pang and Z. Tang, Hollow metal–organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials, Advanced Materials, 1803291, 2018.
    [14] D. Tian, X. Zhou, Y. Zhang , Z. Zhou and X. Bu, MOF-Derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries, Inorganic Chemistry, 54(17), 8159–8161, 2015.
    [15] W. Lia, X. Wu, N. Han, J. Chen, X. Qian, Y. Deng ,W. Tang and Y. Chen, MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance, Sensors and Actuators B, 225, 158–166, 2016.
    [16] D. Ji, H. Zhou, Y. Tong, J. Wang, M. Zhu, T. Chen and A. Yuan, Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries, Chemical Engineering Journal, 313,1623–1632, 2017.
    [17] F. Zheng, S. Xu, Z. Yin, Y. Zhang and L. Lu, Facile synthesis of MOF-derived Mn2O3 hollow microspheres as anode materials for lithium-ion batteries, RSC Advances, 6, 93532, 2016.
    [18] G. Zeng, Y. Chen, L. Chen, P. Xiong and M. Wei, Hierarchical Cerium Oxide Derived from Metal-Organic Frameworks for High Performance Supercapacitor Electrodes. Electrochimica Acta, 222, 773−780, 2016.
    [19] R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. Kim and Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano, 9, 6288−6296, 2015.
    [20] S. Maiti, A. Pramanik and S. Mahanty, Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal-organic framework. CrystEngComm., 18, 450−461, 2016.
    [21] Y. Han, S. Zhang, N. Shen, D. Li and X. Li, MOF-Derived porous NiO nanoparticle architecture for high performance supercapacitors. Materials Letters, 188, 1−4, 2017.
    [22] S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang and S. Qiu, Porous ZnCo2O4 nanoparticles derived from a new mixed- metal organic framework for supercapacitors. Inorganic Chemistry Frontiers, 2, 177−183, 2015.
    [23] J. Xu, S. Liu and C. Liu, Co3O4/ZnO nanoheterostructure derived from core-shell ZIF-8@ZIF-67 for supercapacitors, RSC Advances, 6, 52137−52142, 2016.
    [24] X. Hu, S. Liu, B. Qu and X. You, Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties, ACS Applied Materials Interfaces, 7, 9972−9981, 2015.
    [25] W. Meng, W. Chen, L. Zhao, Y. Huang, M. Zhu, Y. Huang, Y. Fu, F. Geng, J. Yu, X. Chen and C. Zhi, Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance, Nano Energy, 8, 133−140, 2014.
    [26] G. Li, P. Liu, R. Liu, M. Liu, K. Tao, S. Zhu, M. Wu, F. Yi and L. Han, MOF-Derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors, Dalton Transactions, 45, 13311−13316, 2016.
    [27] S. Ullah, I. Khan, M. Choucair, A. Badshah, I. Khan and M. Nadeem, A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material, Electrochimica Acta., 171, 142−149, 2015.
    [28] Ji. Zhou, H. Zhang, J. Dan, Y. Yang and H. Yuan, Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high- performance free-standing supercapacitor electrodes, Journal of Materials Chemistry A , 4, 8283−8290, 2016.
    [29] D. Yin, G. Huang, Q. Sun, Q. Li, X. Wang, D. Yuan, C. Wang and L. Wang, RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes, Electrochimica Acta., 215, 410−419, 2016.
    [30] X. Deng, J. Li, S. Zhu, F. He, C. He, E. Liu, C. Shi, Q. Li and N. Zhao, Metal−organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors, Journal of Alloys and Compounds, 693, 16−24, 2017.
    [31] Y. Lu , J. Tu , Q. Xiong , J. Xiang , Y. Mai , J. Zhang ,Y. Qiao , X. Wang , C. Gu and S. Mao , Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P /C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries, Advanced Functional Materials, 22 , 3927−3935, 2012.
    [32] P. Jiang, Q. Liu and X. Sun , NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions, Nanoscale, 6 , 13440−13445, 2014.
    [33] M. Wang, M. Lin, J. Li, L. Huang, Z. Zhuang, C. Lin, L. Zhou and L. Mai, Metal–organic framework derived carbon-confined Ni2P nanocrystals supported on graphene for an efficient oxygen evolution reaction, Chemical Communications, 53, 8372, 2017.
    [34] W. Zhang and K. Huang, A review of recent progress in molybdenum disulfide-based supercapacitors and batteries, Inorganic Chemistry Frontiers, 4, 1602, 2017.
    [35] S. Couck, J. Denayer, G. Baron, T. Rémy, J. Gascon and F. Kapteijn, An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, Journal of the American Chemical Society, 131(18), 6326, 2009.
    [36] R. Kuppler, D. Timmons, Q. Fang, J. Li, T. Makal, M. Young, D. Yuan, D. Zhao, W. Zhuang and H. Zhou, Potential applications of metal-organic frameworks, Coordination Chemistry Reviews, 253, 3042–3066, 2009.
    [37] M. Alkordi, Y. Liu, R. Larsen, J. Eubank and M. Eddaoudi, Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts, Journal of the American Chemical Society, 130, 12639–12641, 2008.
    [38] A. Morozan and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy & Environmental Science, 5, 9269, 2012.
    [39] L. Zhang and X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38, 2520–2531, 2009.
    [40] L. Zhang, R. Zhou and X. Zhao, Graphene-based materials as supercapacitor electrodes, Journal of Materials Chemistry A, 20, 5983–5992, 2010.
    [41] F. Shi, L. Li, X. Wang, C. Gu and J. Tu, Metal oxide/hydroxide-based materials for supercapacitors, RSC Advances, 4, 41910, 2014.
    [42] M. Vangari, T. Pryor and L. Jiang, Supercapacitors: Review of Materials and Fabrication Methods, Journal of Energy Engineering, 139(2), 72-79, 2013.
    [43] A. Muzaffar. M. Ahamed, K. Deshmukh and J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renewable and Sustainable Energy Reviews, 101, 123−145, 2019.
    [44] C. Merino, P. Soto, E. Ortego, J. Salazar, F. Pico and J. Rojo, Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors, Carbon, 43, 551−557, 2005.
    [45] C.Portet, P. Taberna, P. Simon and E. Flahaut, Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, Journal of Power Sources, 139, 371–378, 2005.
    [46] Y. Zhao, J. Liu, M. Horn, N. Motta, M. Hu1 and Y. Li, Recent advancements in metal organic framework based electrodes for supercapacitors, Science China Materials, 61(2), 159–184, 2018.
    [47] D. Lee, D. Shinde, E. Kim, W. Lee, I. Oh, N. Shrestha, J. Lee and S. Han, Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology, Microporous and Mesoporous Materials, 171, 53−57, 2013.
    [48] D. Yin, G. Huang, Q. Sun, Q. Li, X. Wang, D. Yuan, C. Wang and L. Wang, RGO/Co3O4 Composites Prepared Using GO-MOFs as Precursor for Advanced lithium-ion batteries and supercapacitors electrodes, Electrochimica Acta, 215, 410−419, 2016.
    [49] Q. Meng, K. Cai, Y. Chen and L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy, 36, 268−285, 2017.
    [50] H. Liang, C. Qiu, J. Appala, N. Udo, S. Husam and N. Alshareef, Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors, Nano Energy, 35, 331−340, 2017.
    [51] K. Byrappa and T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials, 53, 117−166, 2007.
    [52] S. Feng and M. Greenblatt, Galvanic cell type humidity sensor with protonic NASICON-based material operative at high temperature, Chemistry of Materials, 4 (6), 1257−1262, 1992.
    [53] Y. Mao, G. Li, W. Xu and S. Feng, Hydrothermal synthesis and characterization of nanocrystalline pyrochlore oxides M2Sn2O7 (M = La, Bi, Gd or Y), Journal of Materials Chemistry A, 10 (2), 479−282, 2000.
    [54] C. Zhao, S. Feng, R. Xu, C. Shi and J. Ni, Hydrothermal synthesis and lanthanide doping of complex fluorides BeBaF4, LiYF4 and KYF4 under Mild Conditions, Chemical Communications, 945−946, 1997.
    [55] J. Eckert, C. Houston, B. Gersten, M. Lencka and R. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of American Ceramic Society, 79(11), 2929−2939, 1996.
    [56] W. Hertl, Kinetics of barium titanate synthesis, Journal of American Ceramic Society, 71(10), 879−83, 1988.
    [57] J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei and C. Li, Puzzles and confusions in supercapacitor and battery: Theory and solutions, Journal of Power Sources, 401, 213−223, 2018.
    [58] P. Kissinger and W. Heineman, Cyclic voltammetry, Journal of Chemical Education, 60(9), 702−706, 1983.
    [59] A. Bott, A comparison of cyclic voltammetry and cyclic staircase voltammetry, Current Separations, 16, 23−26, 1997.
    [60] E. Barsoukov and J. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application, John Wiley & Sons, American, 2005.
    [61] J. Rubinson and Y. Kayinamura, Charge transport in conducting polymers: insight from impedance spectroscopy, Chemical Society Reviews, 38, 3339−3347, 2009.
    [62] E. Randviir, C. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5 (5), 1098-1115, 2013.
    [63] W. Lestari, I. Winarni and F. Rahmawati, Electrosynthesis of metal-organic frameworks (MOFs) based on nickel(II) and benzene 1,3,5-tri carboxylic acid (H3BTC): an optimization reaction condition, IOP Conference Series: Materials Science and Engineering., 172, 012064, 2017.
    [64] A. Adekunle, J. Oyekunle, O. Oluwafemi, A. Joshua, W. Makinde, A. Ogunfowokan, M. Eleruja and E. Ebenso, Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2-) and nitric oxide (NO), International Journal of Electrochemical Science, 9, 3008 – 3021, 2014.
    [65] L. Ye, Y. Zhou, Z. Bao, Y. Zhao, Y. Zou, L. Zhao and Q. Jiang, Sheet-membrane Mn-doped nickel hydroxide encapsulated via heterogeneous Ni3S2 nanoparticles for efficient alkaline battery–supercapacitor hybrid devices, Journal of Materials Chemistry A, 6, 19020−19029, 2018.
    [66] X. Zhang, J. Luo, P. Tang, X. Ye, X. Peng, H. Tang, S. Sun and J. Fransaer, A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading, Nano Energy, 31, 311−321, 2017.
    [67] X. Li, A. Elshahawy, C. Guan and J. Wang, Metal phosphides and phosphates‐based electrodes for electrochemical supercapacitors, Small, 13(39), 1701530, 2017.
    [68] X. Xiong, D. Ding, D. Chen,G. Waller, Y. Bu, Z. Wang and M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors, Nano Energy, 11, 154–161, 2015.
    [69] J. Xiao, Q. Lv, Y. Zhang, Z. Zhanga and S. Wang, One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance, RSC Advances, 6, 107859–107864, 2016.
    [70] S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian and Z. Guo, Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance, Journal of Materials Chemistry A, 3, 3641–3650, 2015
    [71] K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li, and S. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach, Advanced Functional Materials, 25, 7530–7538, 2015.
    [72] N. Parveen and M. Cho, Self-Assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications, Scientific Reports, 6, 27318, 2016.

    下載圖示 校內:2024-08-23公開
    校外:2024-08-23公開
    QR CODE