簡易檢索 / 詳目顯示

研究生: 蔡旻臻
Tsai, Min-Chen
論文名稱: 七螺旋烴π共軛衍生物之合成、結構與性質探索
π-Extended Heptahelicenes: Syntheses, Structural Analyses and Properties
指導教授: 吳耀庭
Wu, Yao-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 環化反應鈀金屬催化延伸π共軛的七螺旋烴
外文關鍵詞: Annulation, Palladium-catalyzed, π-Extended Heptahelicenes
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分兩分,第一部分為延伸π共軛系統的七螺旋烴,第二部分為含取代基二炔化合物親電環化反應的討論。第一部分中,以實驗室內合成出的四苯并[f,i,o,r]七螺旋烴1做為參考,試著以簡化合成反應途徑為目的修正反應條件。將關鍵的中間物5,8-二碘-6,7-二苯基苉11透過鈀金屬催化的耦合反應分別得到經去羧化的含二甲基的四苯并七螺旋烴2,以及延伸螺旋烴π共軛系統的二苯并[i,o]二菲并[f,r]七螺旋烴3。並做晶體結構的比較,其中因結構中螺旋烴的互相影響造成化合物3的分子間距離為3.84 Å (化合物2為3.55 Å),分子內螺旋烴末端苯環距離為3.63 Å (化合物2為4.03 Å)。在吸收光譜上,π共軛系統的延伸使化合物3的最大吸收波長為435奈米,比化合物2紅移了約37奈米(為398奈米),也使得化合物3有最小的能隙值為2.70電子伏特(化合物2為2.77電子伏特)。電化學性質分析中,化合物2和3的HOMO能階值為–5.45和–5.48電子伏特,但沒發現還原電位,所以LUMO能階值由光物理性質得到的能隙值推算。
    第二部分中將討論電子及立體效應在二炔三聯苯化合物中對親電環化反應路徑的影響。在含氟及含異丙基的例子中,氫譜和二維光譜圖經判斷後是沒有重排反應的發生,而含二甲基的化合物在氫譜中是明顯的不對稱訊號,加上晶體結構的確認是重排結構,初步推測可能在電子效應影響下造成重排,然而正確的反應路徑目前還不清楚,實驗仍在進行中。

    This thesis is divided into two parts. In the first part, the syntheses, structures and properties of π-extended heptahelicene 2 and 3 were presented. Secondly, the mechanistic study of diiodo-molecules 11 and 6 were investigated in the following part.
    In the first part, targeted molecules 2 and 3 were prepared from the key intermediate 11 using palladium-catalyzed reaction conditions. The structural analyses of compound 2 and 3 with single X-ray crystallography revealed that structural distortion of compound 3 resulted in the further intermolecular distance (2 and 3 were 3.55 and 3.84 Å, respectively) and shorter distance of extremities (2 and 3 were 4.03 and 3.63 Å, respectively) than compound 2. The longest wavelength absorption of 2 and 3 were observed at 398 and 435 nm, respectively. And the extension of π system in 3 performed not only in longer wavelength but in smaller HOMO-LUMO energy gap, which was determined to be 2.70 eV (2 was 2.77 eV). The HOMO values studied from cyclic voltammetry of 2 and 3 were –5.45 and –5.48 eV, respectively.
    In the second part, the iodonium-mediated electrophilic cyclization reactions of terphenyl 21 were studied. A series of central benzene substituted terphenyl 21 were prepared. The formation of C13, C14 substituted picene were observed when isopropyl and difluoro were used whereas benzo[c]chrysene derivative was formed when dimethyl was used as substituent. The reason was proposed to be either electronic or steric effect. The more detailed studies are still working.

    目錄 中文摘要...................................................I 英文摘要..................................................II 目錄....................................................VIII 圖目錄.....................................................X 表目錄...................................................XII 試劑名稱與縮寫對照表....................................XIII 第一章 前言................................................1 1.1. 多環芳香烴............................................1 1.2. 螺旋烴................................................3 1.3. 研究動機..............................................6 第二章 結果與討論..........................................7 2.1. 四苯并[f,i,o,r]七螺旋烴及二甲基衍生物.................7 2.1.1. 前言................................................7 2.1.2. 合成測試及討論......................................8 2.1.2.1. 合成5,8-二碘-6,7-二苯基苉.........................8 2.1.2.2. 嘗試合成四苯并[f,i,o,r]七螺旋烴...................9 2.1.3. 二甲基四苯并[f,i,o,r]七螺旋烴的晶體結構討論........14 2.2. 11,24-二正丁基二苯并[i,o]菲并[f,r]七螺旋烴...........16 2.2.1. 前言...............................................16 2.2.2. 合成測試及討論.....................................16 2.2.2.1. 嘗試合成5,6,17,18-四(對-甲苯)二苯并[i,o]七螺旋烴.16 2.2.2.2. 合成11,24-二正丁基二苯并[i,o]菲并[f,r]七螺旋烴...18 2.2.3. 11,24-二正丁基二苯并[i,o]二菲并[f,r]七螺旋烴的晶體結構討論....................................................20 2.3. 嘗試合成含芴的七螺旋烴衍生物.........................23 2.3.1. 前言...............................................23 2.3.2. 合成測試及討論.....................................25 2.3.2.1. 嘗試合成化合物4..................................25 2.3.2.2. 以化合物29為目標產物修正合成路徑.................29 2.4. 含取代基二炔化合物之親電環化反應討論.................31 2.4.1. 前言...............................................31 2.4.2. 合成二碘化物的結果討論.............................32 2.5.結構及性質比較........................................35 2.5.1. 化合物1、2、3晶體結構比較..........................35 2.5.2. 光物理性質分析.....................................38 2.5.3. 電化學性質分析.....................................39 第三章 結論...............................................41 第四章 實驗...............................................43 4.1. 實驗儀器與部分細節...................................43 4.2. 詳細實驗操作.........................................45 4.2.1. 合成 5,8-Diodo-6,7-diphenylpicene (11).............45 4.2.2. 合成 Tetrabenzo[f,i,o,r]heptahelicene 及二甲基衍生物 ..........................................................47 4.2.3. 合成11,24-Di-nbutylphenanthro[f,r]dibenzo[i,o]heptahelicene............49 4.2.4. 合成化合物5........................................54 4.2.5. 合成二碘化合物.....................................58 第五章 參考資料...........................................64 第六章 附錄...............................................67 6.1. 晶體數據.............................................67 6.2. 光物理性質分析圖....................................100 6.3. 電化學性質分析圖....................................101 6.4. NMR 光譜圖..........................................103

    [1] Solà, M. Front. Chem. 2003, 1, 1.
    [2] (a) Krygowski, T. M.; Cyrański, M. K. Chem. Rev. 2001, 101, 1390. (b) Ostrowski, S.; Dobrowolski, J. C. RSC. Adv. 2014, 4, 44158.
    [3] Schleyer, P. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Nicolaas, J. R.; Hommes, E. J. Am. Chem. Soc. 1996, 118, 6317.
    [4] Dabestani, R.; Ivanov, N. Photochem. and Photobiol. 1999, 70, 15.
    [5] (a) Ito, H.; Ozaki, K.; Itami, K. Angew. Chem. Int. Ed. 2017, 56, 11144–11164. (b) Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. Angew. Chem. Int. Ed. 2013, 52, 9900–9930 (c) Yamano, R.; Shibata, Y.; Tanaka, K. Chem. Eur. J. 2018, 24, 6364–6370.
    [6] Yomashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 2–3.
    [7] Meisenheiner, J.; Witte, K. Chem. Ber. 1903, 36, 4153.
    [8] Newman, M. S.; Lutz, W. B.; Lednicer, D. J. Am.Chem. Soc. 1956, 78, 4765.
    [9] Shen, Y.; Chen, C. F.; Chem. Rev. 2012, 112, 1465.
    [10] (a) Liu, B.; Böckmann, M. Jiang, W.; Doltsinis, N. L.; Wang, Z. J. Am. Chem. Soc. 2020, 142, 7092–7099.
    (b) Zeng, C.; Xiao, C.; Feng. X.; Zhang, L.; Jiang, W.; Wang, Z. Angew. Chem. Int. Ed. 2018, 57, 10933–10937.
    [11] Sáchez, I. G.; Šámal, M.; Nejedlý, J.; Karras, M.; Klívar, J; Rybáček, J.; Buděšínký, M.; Bednárová, L.; Selidlerová, B.; Stará, I. G.; Starý. Chem. Commun. 2017, 53, 4370–4373.
    [12] 引用自我們實驗室黃珮瑜學姊的碩士論文。
    [13] Jančařík, A.; Rybáček, J.; Cocq, K.; Chocholoušová, J. V.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, G. I.; Starý, I. Angew. Chem. Int. Ed. 2013, 52, 9970–9975.
    [14] Hsieh, Y. C.; Wu, C. F.; Chen, Y. T.; Fang, C. T.; Wang, C. S.; Li, C. H.; Chen, L. Y.; Cheng, M. J.; Chueh, C. C.; Chou, P. T.; Wu, Y. T. J. Am. Chem. Soc. 2018, 140, 14357–14366.
    [15] Pan, S.; Jiang, H.; Zhang, Y.; Chen, D.; Zhang, Y. Org. Lett. 2016, 18, 5192–5195.
    [16] Liu, Z.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 15716–157171.
    [17] (a) Netherton, M. R.; Fu, G. C. In Topics of Organometallic Chemistry; Springer: Berlin, Heidelberg. 2005, p 119. (b) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211–1214.
    [18] Yang, Y.; Zhou, B.; Zhu, X.; Deng, G.; Liang, Y.; Yang, Y. Org. Lett. 2018, 20, 5402–5405.
    [19] (a) Fu, W. C.; Wang, Z.; Chan, W. T. K.; Lin, Z.; Kwong, F. Y. Angew. Chem. Int. Ed. 2017, 56, 7166–7170. (b) Zhao, Q.; Fu, W. C.; Kwong, F. Y. Angew. Chem. Int. Ed. 2018, 57, 3381–3385.
    [20] Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536–7537.
    [21] 引用自我們實驗室馮介寧學姊的博士論文。
    [22] Mohamed, R. K.; Mondal, S.; Guerrera, J. V.; Eaton, T. M.; Schmitt, T. E. A.; Shatruk, M.; Alabugin, I. V. Angew. Chem. Int. Ed. 2016, 55, 12054–12058.
    [23] Li, C. W.; Wang, C. I.; Liao, H. Y.; Chaudhuri, R.; Liu, R. S. J. Org. Chem. 2007, 72, 9203–9207.
    [24] Zhu, C.; Wang, D.; Wang, D.; Zhao, Y.; Sun, W. Y.; Shi, Z. Angew. Chem. Int. Ed. 2018, 57, 8848–8853.
    [25] Ogawa, Y.; Toyama, M.; Karikomi, M.; Seki, K.; Haga, K.; Uyehara, T. Tetrahedron Lett. 2003, 44, 2167.
    [26] Brunetti, F. G.; Gong, X.; Tong, M.; Heeger, A. J.; Wudl, F. Angew. Chem. Int. Ed. 2010, 49, 532–536.
    [27] (a) Chernyak, N.; Gevorgyan, V. Adv. Synth. Catal. 2009, 351, 1101–1114. (b) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 5636–5637.
    [28] Negishi, E.; de Meijere, A. Handbook of Organopalladium Chemistry for Organic Synthesis, 2, Willey–Interscience, New York. 2002, 2783–2788.
    [29] Bangar, P. G.; Jawalkar, P. R.; Dumbre, S.; Patil, D.; Iyer, S. Appl. Organometal. Chem. 2018, 32, 4159.
    [30] 引用自我們實驗室方家德學長的碩士論文。
    [31] Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. Angew. Chem. Int. Ed. 2009, 121, 1159–1163.
    [32] Benhamou, L.; Walker, D.; Bučar, D. K.; Aliev, A. E.; Sheppard, T. D. Org. Biomol. Chem. 2016, 14, 8039–8043.
    [33] Yee, G. M.; Kowolik, K.; Manabe, S.; Fettinger, J. C.; Berben, L. A. Chem. Commun. 2011, 47, 11680–11682.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE